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Designer DAGs:
Bayesian geostatistics with massive data



Christopher Meder/Fotolia

Vegetation phenology

•	 Vegetation cycles drive ecosystem processes

•	 Key components: greenup, senescence 
      warmer climate = early greenup 

•	 How do biological communities respond to climate change?

•	 Increased use of satellite data and remote sensing: 
      vegetation indices, evapotranspiration, leaf area, forest cover, canopy height...

•	 Cloud cover obstructs remote view

•	 Other athmospheric phenomena lead to measurement error 
	 	 fires, humidity, pollution
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Air quality & pollutant exposure monitoring

•	 Poor air quality linked to adverse health outcomes

•	 Acute vs chronic exposures

•	 Ground-level monitors vs satellite imaging

•	 What health effects? Interactions with other exposures?
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Lifeplan project, teams Alaska, Israel, Madagascar, Norway

Species communities & interactions

•	 Occurrence of species & their interactions depend on environ-
mental factors

•	 How do species adapt to climate and environmental change?

•	 How does species richness vary spatially?

•	 What are the effects of climate change on richness?



Brian L. Edlow, M.D., MGH

High resolution medical imaging

ionpath.com

Kuppe et al. 2022 Nature



Plan of action

•	Spatial latent effect modeling of multivariate outcomes
•	Spatial process modeling with Designer DAGs
•	Designer DAGs 
		  for images with gaps: Cubic Meshed Gaussian Processes						      
		  for multi-source data: Spatial Multivariate Trees						       

		  for multivariate non-Gaussian data: Simplified Manifold Preconditioner Adaptation 
		  for directional nonstationarity: Bags of Directed Acyclic Graphs 
		  for provable accuracy in approximating GPs: Radial Neighbors Gaussian Process

•	Additional topics 
		  Multivariate geostatistics with R package meshed 
		  Gridding and parameter expansion for improving computations in challenging settings 
		  Graph Machine Regression & R package gramar



Setting up things: the Bayesian paradigm

Bayesian paradigm:

•	 probability model for data 

•	 prior distribution:  
		  uncertainty about model parameters 

•	 hyperprior distribution(s): 
		  uncertainty about prior parameters

obligatory Thomas Bayes picture
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Bayesian paradigm:

•	 probability model for data 

•	 prior distribution:  
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•	 hyperprior distribution(s): 
		  uncertainty about prior parameters
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model parametersyi

i = 1, . . . , n
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Bayesian hierarchical model with spatial random effects

yj(`) | ⌘j(`), ⌧j ⇠ Pj(⌘j(`), ⌧j)Probability model for outcome j

` 2 D ⇢ <d j = 1, . . . , q

Suppose we observe data at n locations (coordinates / pixels / voxels)

"j(`) ⇠ N(0, ⌧2j )yj(`) = ⌘j(`) + "j(`)example: Gaussian outcome

⌘j(`) = xj(`)
>βj + wj(`)Linear predictor

features or  
observed covariates

latent/random/unobserved 
effects for dependent data

What prior for w(`) at any set of locations L = {`1, . . . , `n} ? 

w(`) =

2

64
w1(`)

...
wq(`)

3

75vector of random effects at location  `



Gaussian process prior for spatial random effects

w(·) ⇠ GP (0,C✓)
q-variate Gaussian process  

for correlating across space, time, outcomes
covariance function

for any L, a GP gives wL ⇠ N(0,CL)

CL[i, j] = C(`i, `j | ✓) = cov(w(`i),w(`j))

(⌫ = 0.5)

Elements of C✓ matrix: Matérn model 

exponential covariance 

Example with q=1

What prior for w(`) at any set of locations L = {`1, . . . , `n} ? 

C✓(`, `
0) = σ2 2

1−⌫

�(⌫)
φ⌫k`− `0k⌫K⌫(φk`− `0k)

= σ2 exp{−φk`− `0k}



Gaussian Processes are slow: why?

Directed Acyclic Graph (DAG)   
can be used to setup a Gibbs sampler 
(procedure can even be automated, e.g. BUGS, JAGS & successors)

Gibbs sampler algorithm 
requires knowledge about the full conditional distributions 
outputs correlated samples from the joint posterior distribution

Gibbs sampler  
Cycle through these steps:

•	 sample w | y,✓,β, ⌧   
 

•	 sample ✓ | w 

•	 sample β | w,y, ⌧
•	 sample ⌧ | y,✓,w

With Gaussian outcomes we can also:
•	 Marginalize out w to get y ⇠ GP (X�,C✓ +D) 
•	 Model y directly as a GP, i.e. y ⇠ GP (X�, eC✓,⌧ )

Collapsed/Response Gibbs sampler  
Cycle through these steps:

•	 sample ✓ | y 

•	 sample β | y, ⌧  
•	 sample ⌧ | y,β



Gaussian Processes are slow: why?

large dimension 
nq x nq

w(·) ⇠ GP (0,C✓)
q-variate Gaussian process  

for correlating across space, time, outcomes

Fill elements of matrix  C✓ 

O(n3q3)

Compute  C�1
✓   and its determinant

complexity

p(✓ | w) / p(w | ✓)p(✓)

When udpating ✓ we find:

p(w | ✓) = |2⇡C✓|−1/2 exp

⇢
�1

2
w>C−1

✓ w

�we need to evaluate:

n > 10 5



A short summary...

•	 Gaussian Processes are flexible
•	 Gaussian Processes are convenient
•	 Gaussian Processes lead to meaningful uncertainty quantification 
 
However...
•	 Gaussian Processes are slow/do not scale when: 
		  -	 the number of observed locations n is large 
		  -	 the number of observed outcomes q is large
•	 Need to use something  
		  - 	similarly flexible 
		  -	 scalable to big n, big q.



Gaussian Processes are slow: a quick look at some relevant literature

Gaussian Predictive Process & Inducing points
	 Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2007; Banerjee et al. 2008; Banerjee et al. 2010; Guhaniyogi et al. 2011;
	 Finley, Banerjee, and Gelfand 2012; Low et al., 2015; Ambikasaran et al., 2016; Huang and Sun, 2018; Geoga et al., 2020
Exploit data structure
	 Gilboa et al., 2015; Moran and Wheeler, 2020; Loper et al., 2020
Fixed Rank Kriging 
	 Cressie and Johannesson 2008
Multi-resolution approximations
	 Gramacy and Lee 2008; Fox and Dunson 2012; Katzfuss 2017
Covariance Tapering 
	 Furrer, Genton, and Nychka 2006; Kaufman, Schervish, and Nychka 2008; Bevilacqua et al., 2019
Independent partitioning 
	 Sang and Huang 2012; Stein 2014
Composite likelihood
	 Bai et al., 2012; Eidsvik et al., 2014; Bevilacqua and Gaetan, 2015
Gaussian Random Markov Fields
	 Cressie 1993; Rue 2001; Rue and Held 2005 
Vecchia’s approximation & extensions
	 Vecchia 1988; Stein et al. 2014; Gramacy and Apley 2015; Datta et al. 2016; Guinness 2018; Heaton et al. 2019; Katzfuss and Guinness 2019;
	 Quiroz et al., 2019; Schafer et al. 2021



Vecchia’s approximation & extensions

p(w | ✓) = p(w1 | ✓)p(w2 | w1,✓) · · · p(wn | w1, . . . ,wn�1,✓)

⇡
nY

i=1

p(wi | wNi
,✓) Ni = {j > 0 : i−m  j < i}Approximate by limiting the size of conditioning sets picking m nearest neighbors

Approximation leads to valid joint density (Vecchia 1988):
nY

i=1

p(wi | wNi ,✓) = ep(w | ✓)

Extensible to valid stochastic process (Datta et al 2016). For any set of locations V :

ep(wV) =

Z
ep(wU | wS)ep(wS)

Y

{si2S\V}

d(w(si))

p(w | ✓) = p(w1 | ✓)p(w2 | w1,✓) · · · p(wn | w1, . . . ,wn�1,✓)

⇡
nY

i=1

p(wi | wNi
,✓) Ni = {j > 0 : i−m  j < i}p(w | ✓) = p(w1 | ✓)p(w2 | w1,✓) · · · p(wn | w1, . . . ,wn�1,✓)

⇡
nY

i=1

p(wi | wNi
,✓) Ni = {j > 0 : i−m  j < i}

Fix reference set of locations S and order on it, then express joint density as product of conditionals



Vecchia’s approximation & extensions

Joint density Product of conditional 
densities

Directed Acyclic Graph 
(DAG)

p(A,B,C) = p(A)p(B | A)p(C | A,B)p(A,B,C) = p(A)p(B | A)p(C | A,B)

•	 Challenges to scalability in fully Bayesian analyses of diverse data types

•	 Limited flexibility in modeling multivariate data with unusual configurations

•	 Lack of theory support of Vecchia approximations

•	 No clear path for intepretable modeling of certain nonstationary phenomena

Why Vecchia/NNGP works: DAGs can be used to create new valid densities/processes

Joint density
Product of conditional 

densitiesDirected Acyclic Graph 
(DAG)

p(A)p(B | A)p(C | A)p(D | C) p(A,B,C,D)

Neighbor-based constructions do not exploit full potential of DAG-based models:



Vecchia’s approximation & extensions

Joint density Product of conditional 
densities

Directed Acyclic Graph 
(DAG)

p(A,B,C) = p(A)p(B | A)p(C | A,B)p(A,B,C) = p(A)p(B | A)p(C | A,B)

•	 Better scalability in fully Bayesian analyses of diverse data types

•	 Better flexibility in modeling multivariate data with unusual configurations

•	 New theory on quality of approximation of unrestricted GP

•	 Innovative interpretable modeling of certain nonstationary phenomena

Why Vecchia/NNGP works: DAGs can be used to create new valid densities/processes

Joint density
Product of conditional 

densitiesDirected Acyclic Graph 
(DAG)

p(A)p(B | A)p(C | A)p(D | C) p(A,B,C,D)

My contributions: carefully designing DAGs for



Designer DAGsDesigner DAGs



Spatial meshing: spatial processes via designer DAGs

Data locations

Defining a stochastic process = characterize the distribution of any finite set of random variables
Spatial process = each random variable is associated to a spatial coordinate (location)



Spatial meshing: spatial processes via designer DAGs

Fix a reference set of locations S, then partition process realizations at S into M blocks 
Random variables in each block are fully connected (edges hidden here)



Spatial meshing: spatial processes via designer DAGs

Place edges between blocks to create a sparse DAG

w[3] = w2

Example:
block 2 is the parent node of block 3



Spatial meshing: spatial processes via designer DAGs

Place edges between blocks to create a sparse DAG

Example: blocks {2,5} are the 
parent nodes of block 4

w[4] =


w2

w5

�



Spatial meshing: spatial processes via designer DAGs

Approximate by assuming joint density factorizes according to chosen DAG:

Approximation leads to valid density & can be extended to standalone stochastic process  
via Kolmogorov conditions (P et al 2022 JASA)

ep(wV) =

Z
ep(wU | wS)ep(wS)

Y

{si2S\V}

d(w(si))

p(w | ✓) ⇡
MY

j=1

p(wj | w[j],✓) [j] = {i : i ! j in G}

MY

j=1

p(wj | w[j],✓) = ep(w | ✓)

Where other locations U  are similarly partitioned and can only have parents in S .

For any set V  of locations, we have



Spatial meshing: spatial processes via designer DAGs

Assuming a Gaussian base density gives us

Complexity (number of flops) for evaluating N(w;0, eC✓):

O(MJ3m3)

#blocks         max #parents in DAG       max block size

Assuming blocks of equal size: O(nJ3m2) ⌧ O(n3)

Hi = Ci,[i]C
�1
i,[i]

Ri = Ci −Ci,[i]C
�1
i,[i]C [i],i

MY

i=1

N(wi;Hiw[i],Ri) = N(w;0, eC✓) ⇡ N(w;0,C✓)



Spatial meshing: spatial processes via designer DAGs

Assuming a Gaussian base density gives us

Hi = Ci,[j]C
�1
[j]

Ri = Ci −Ci,[j]C
�1
[j] C [j],i

MY

j=1

N(wj ;Hjw[j],Rj) = N(w;0, eC✓) ⇡ N(w;0,C✓)

•	 Scalable replacement of GP in Bayesian hierarchical model

•	 Process based estimation and predictions at new locations

•	 Exact posterior sampling methods for Meshed GPs via Gibbs samplers

•	 Alternatively, Meshed GPs are interpretable as an approximation of GP (0,C✓)

Extension to standalone stochastic process leads to Meshed Gaussian Process



QMGP: axis-parallel tessellation and 2-parent DAG

Data locations



QMGP: axis-parallel tessellation and 2-parent DAG

Domain partitioning



QMGP: axis-parallel tessellation and 2-parent DAG

DAG links domain partitions



QMGP: axis-parallel tessellation and 2-parent DAG

DAG links domain partitions

wj

w[j],1

w[j],2



QMGP: axis-parallel tessellation and 2-parent DAG 

Sparse pattern DAG (mesh) Sparsity pattern of eC
�1

✓Undirected moral graph

Hj = Cj,[j]C
�1
[j]

Rj = Cj,j �HjC [j],j

Hi = Ci,[j]C
�1
[j]

Ri = Ci −Ci,[j]C
�1
[j] C [j],i

MY

j=1

N(wj ;Hjw[j],Rj) = N(w;0, eC✓) ⇡ N(w;0,C✓)

Graph coloring 
parallel block Gibbs sampling

3D extension
space-time data models

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889



QMGP: Bayesian hierarchical model & Gibbs sampler

Cubic Meshed GP:  
computationally much cheaper 
 
Take advantage of graph coloring for 
parallel sampling{

Gibbs sampler 
Cycle through these steps:

•	 sample  wj | w�j , y,✓,β, ⌧  
 

•	 update ✓ | w      (MH accept/reject) 

•	 sample β | w,y, ⌧
•	 sample ⌧ | y,✓,w

yj(`) | ⌘j(`), ⌧j ⇠ Pj(⌘j(`), ⌧j)Probability model for outcome j

` 2 D ⇢ <d j = 1, . . . , q

⌘j(`) = xj(`)
>βj + wj(`)Linear predictor

w(·) ⇠ meshedGP (0,C✓,G,T )

Prior for spatial random effects

•	 Spatial DAG extends Bayesian model DAG

•	 Posterior computations via MCMC proceed straightforwardly  
                             (valid spatial process = no need to verify detailed balance conditions)

•	 Scalable to large data sets thanks to known properties of chosen DAG

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889



Meshed Gaussian processes

Cubic Meshed GP:  
computationally much cheaper 
 

and 
p(wj | w[j],✓) = N(wj ;Hjw[j],Rj) 
where 
Hj = Cj,[j]C

�1
[j]

Rj = Cj,j �HjC [j],j

 
 
 
and C�1

[j]  is small for all j:

{ p(✓ | w) /
MY

j=1

p(wj | w[j],✓)p(✓)

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889

yj(`) | ⌘j(`), ⌧j ⇠ Pj(⌘j(`), ⌧j)Probability model for outcome j

` 2 D ⇢ <d j = 1, . . . , q

⌘j(`) = xj(`)
>βj + wj(`)Linear predictor

w(·) ⇠ meshedGP (0,C✓,G,T )

Prior for spatial random effects

Gibbs sampler 
Cycle through these steps:

•	 sample  wj | w�j , y,✓,β, ⌧  
 

•	 update ✓ | w      (MH accept/reject) 

•	 sample β | w,y, ⌧
•	 sample ⌧ | y,✓,w

O(nJ3m2) ⌧ O(n3)



Application: NDVI imagery

•	 Satellite images store different bands of the electromagnetic spectrum
•	 Using these bands, Normalized Difference Vegetation Index can be calculated
•	 Results in a NDVI “image” at regular grid of pixels

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889



Application: NDVI imagery

•	 Satellite images store different bands of the electromagnetic spectrum
•	 Using these bands, Normalized Difference Vegetation Index can be calculated
•	 Results in a NDVI “image” at regular grid of pixels
•	 Clouds obstruct view and create gaps

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
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Application: NDVI imagery – why use QMGP?

•	 Satellite images store different bands of the electromagnetic spectrum
•	 Using these bands, Normalized Difference Vegetation Index can be calculated
•	 Results in a NDVI “image” at regular grid of pixels
•	 Clouds obstruct view and create gaps

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889

wj

w[j],1

w[j],2

p(wj | w[j],✓) = N(wj ;Hjw[j],Rj) 
where 
Hj = Cj,[j]C

�1
[j]

Rj = Cj,j �HjC [j],j

 
 

p(✓ | w) /
MY

j=1

p(wj | w[j],✓)p(✓)

•	 These matrices only depend on relative distance between locations
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wj

w[j],1

w[j],2

p(wj | w[j],✓) = N(wj ;Hjw[j],Rj) 
where 
Hj = Cj,[j]C

�1
[j]

Rj = Cj,j �HjC [j],j

 
 

p(✓ | w) /
MY

j=1

p(wj | w[j],✓)p(✓)

•	 These matrices only depend on relative distance between locations

•	 We only need to calculate M* of them, where M* = O(1)

•	 Density evaluation cost down to  O(nJm) from  O(nJ3m2)

•	 Cost dominated by sampling: O(nm2)



Cubic MGPs compared to Nearest-neighbor GPs

•	 Favorable comparison with state-of-the-art alternatives
•	 Up to 10x faster (wall clock time)
•	 Up to 2.5x more efficient Markov-chain Monte Carlo
•	 Total 25x improvement
•	 Improvements are due to the ability to design purpose-made DAGs

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889



Application: Serengeti NDVI probabilistic gap filling

•	 Normalized Difference Vegetation Index (NDVI) measured by LANDSAT over Serengeti park area
•	 16 million locations in space & time
•	 Frequent cloud cover obfuscates images
•	 Bayesian model for probabilistic recovery of data behind clouds
•	 Model univariate NDVI outcome using spatiotemporally varying coefficient regression on 2 regressors (intercept, elevation)
•	 Posterior sampling for a bivariate latent MGP
•	 Results in less than 2 days (this is fast)

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
Journal of the American Statistical Association 117(538): 969-982.  
https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889



Application: MODIS Alpine Snow/Tree cover data

MODIS satellite data •	 Snow cover: number of days with snow within 8-day period
•	 Leaf area index: leaf surface relative to ground surface (an integer)



High performance methods for non-Gaussian data

•	 In many cases, Gaussian assumption is inappropriate
•	 Latent Gaussian process models still useful with non-Gaussian first stage
•	 Use-case: multivariate multi-type data using spatial factor model

Gibbs sampler  
Cycle through these steps:

•	 sample  wj | w�j , y,✓,⇤,β, ⌧  
 

•	 sample ✓ | w 

•	 sample β | w,y, ⌧
•	 sample ⌧ | y,✓,w

yj(`) ⇠ Pj(⌘j(`), ⌧j) j = 1, . . . , q

⌘(`) = XB +⇤v

v(·) ⇠ meshedGP (0,C✓)

yj(`) ⇠ Pj(⌘j(`), ⌧j) j = 1, . . . , q

⌘(`) = XB +⇤v

v(·) ⇠ meshedGP (0,C✓)

⌘ = Xβ +⇤w
w(·)

Cubic Meshed GP:  
computationally much cheaper 
 
Take advantage of graph coloring for 
parallel sampling{

{ Meshed GP:  
computationally cheap



High performance methods for non-Gaussian data

•	 In many cases, Gaussian assumption is inappropriate
•	 Latent Gaussian process models still useful with non-Gaussian first stage
•	 Use-case: multivariate multi-type data using spatial factor model

Lack of conjugacy:  
How can we update wj efficiently?{

Gibbs sampler  
Cycle through these steps:

•	 sample  wj | w�j , y,✓,⇤,β, ⌧  
 

•	 sample ✓ | w 

•	 sample β | w,y, ⌧
•	 sample ⌧ | y,✓,w

yj(`) ⇠ Pj(⌘j(`), ⌧j) j = 1, . . . , q

⌘(`) = XB +⇤v

v(·) ⇠ meshedGP (0,C✓)

yj(`) ⇠ Pj(⌘j(`), ⌧j) j = 1, . . . , q

⌘(`) = XB +⇤v

v(·) ⇠ meshedGP (0,C✓)

⌘ = Xβ +⇤w
w(·)

{ Meshed GP:  
computationally cheap



SiMPA: Simplified Manifold Preconditioner Adaptation M. Peruzzi & D.B. Dunson (2022)
Spatial Meshing for General Bayesian Multivariate Models. 
https://arxiv.org/abs/2201.10080

1 – Propose a new value for wj

Where w[j] are the parents and w[i!j] the children in the DAG, ✏  the step size, and 

2 – Accept/Reject based on Metropolis ratio

3 – With probability �m # 0, Update M (m) based on choice at step 2.

G = R−1
j +

X

i2[j!i]

R−1
i + F ⌧

g = R−1
j Hjw[j] +

X

i2[j!i]

H>
[i]\jR

−1
i w[i]\j + fy,β,⌧

•	 Cost O(q2nj
2) after adaptation period

•	 Efficient move due to using second order info

M⇤
(m) = M (m−1) + (Gwj

�M (m−1))

w⇤
j | w[j],w[j!i],✓,β,y, ⌧ ⇠ N(wj +

✏2

2
M⇤

(m)g, ✏
2M⇤

(m))

Adaptation of preconditioner

•	 Target update: preconditioned MALA (simple, fast, efficient)
•	 Adaptively & quickly build the preconditioner using simplified Manifold MALA

This is what Simplified Manifold MALA would use!



SiMPA: Simplified Manifold Preconditioner Adaptation M. Peruzzi & D.B. Dunson (2022)
Spatial Meshing for General Bayesian Multivariate Models. 
https://arxiv.org/abs/2201.10080
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•	 Two related count outcomes 
		  - n=3600 
		  - leave out 20% of data
•	 Goals 
		  - prediction 
		  - recovery of latent log-intensity 
		  - uncertainty quant. about log-intensity

•	 meshed GPs with SiMPA 
		  - results in <10s 
		  - orders of magnitude faster than full GP



SiMPA: Simplified Manifold Preconditioner Adaptation M. Peruzzi & D.B. Dunson (2022)
Spatial Meshing for General Bayesian Multivariate Models. 
https://arxiv.org/abs/2201.10080

Estimation of latent correlation ρ
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SiMPA: Simplified Manifold Preconditioner Adaptation M. Peruzzi & D.B. Dunson (2022)
Spatial Meshing for General Bayesian Multivariate Models. 
https://arxiv.org/abs/2201.10080
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•	 MODIS data on Snow cover and Leaf Area Index over the central Alps
•	 Data size is about 250,000
•	 Snow cover: number of days with snow within 8-day period
•	 Leaf area index: leaf surface relative to ground surface (an integer)



Multivariate misaligned data from MODIS (satellite) and GHCN (land based)

•	 Multivariate misaligned data difficult for methods based on neighbor search  (QMGP, NNGP, Vecchia)

•	 Need DAG to produce reasonable spatial conditional independence

•	 The set of “neighbors” might include no data from some variable

•	 Develop new method to account for different resolutions of multiple measured outcomes 

Missing data: MODIS
Missing data: GHCN



Spatial Multivariate Trees

Spatial Multivariate Tree
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M. Peruzzi & D.B. Dunson (2022)
Spatial Multivariate Trees for Big Data Bayesian Regression.
Journal of Machine Learning Research 23(17):1−40. 
https://www.jmlr.org/papers/v23/20-1361.html

•	 Recursive domain partitioning & recursive treed DAG

•	 Outcomes at low resolution are placed near the tree root: reasonable within-outcomes conditional independence restriction 

•	 Outcomes at high resolution fill the tree to ensure reasonable between-outcomes conditional independence restriction

•	 Large conditioning sets for variables at top levels (“information never hurts” principle)

•	 Reduced cost of building large C�1
[j]  : if j is at level T>0 of the tree, [j] has size Tm but cost is O(T 3m3)x



Spatial Multivariate Trees: MODIS and GHCN weather data

•	 5 outcomes from 2 different sources
•	 MODIS satellite data
•	 GHCN land-based station data
•	 PRCP more sparsely observed
•	 Misalignment
•	 Data size ~ 1M
•	 Compute time 16 hours or less

M. Peruzzi & D.B. Dunson (2022)
Spatial Multivariate Trees for Big Data Bayesian Regression.
Journal of Machine Learning Research 23(17):1−40. 
https://www.jmlr.org/papers/v23/20-1361.html

Out-of-sample predictions and UQ

Test set



BAGs: Bags of directed Acyclic Graphs B. Jin, M. Peruzzi, D.B. Dunson (2021)
Bag of DAGs: Flexible & Scalable Modeling of Spatiotemporal Dependence.
https://arxiv.org/abs/2112.11870

•	 Application: PM 2.5 due to forest fires depends on winds
•	 Measure PM2.5 using network of PurpleAir monitors
•	 Forest fires in California cause acute exposure to PM2.5
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BAGs: Bags of directed Acyclic Graphs B. Jin, M. Peruzzi, D.B. Dunson (2021)
Bag of DAGs: Flexible & Scalable Modeling of Spatiotemporal Dependence.
https://arxiv.org/abs/2112.11870

•	 Directed graphical models have causal interpretation
•	 Fixed DAG may lead to wrong conditional independence assumptions

•	 Reduce sensitivity by stochastically searching reasonable DAG edges from a bag of allowed directions
•	 Inferred DAG edges inform about prevalent wind directions
•	 Interpretable, process based inference of directional dependence 
•	 Scalable because DAG is sparse
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BAGs: Bags of directed Acyclic Graphs B. Jin, M. Peruzzi, D.B. Dunson (2021)
Bag of DAGs: Flexible & Scalable Modeling of Spatiotemporal Dependence.
https://arxiv.org/abs/2112.11870

BAGs vs SPDE residuals

Inferred winds and levels of PM2.5



RadGP: provable approximation accuracy Y. Zhu, M. Peruzzi, C. Li & D.B. Dunson (2022)
Radial Neighborss for Provably Accurate Scalable Approximations of Gaussian Processes 
https://arxiv.org/abs/2211.14692

•	 Dual interpretation: approximation to a GPs or standalone processes based on a parent GP

•	 NNGP / Vecchia GP / MGP lack theoretical results on approximation quality

•	 Alternating partition construction leads to Radial neighbors Gaussian process

•	 Draw a radius around location: all other locations within radius are either parents or children in DAG 

RadGP DAGVecchia GP DAG



RadGP: provable approximation accuracy Y. Zhu, M. Peruzzi, C. Li & D.B. Dunson (2022)
Radial Neighborss for Provably Accurate Scalable Approximations of Gaussian Processes 
https://arxiv.org/abs/2211.14692

Intuition:

•	 If covariance matrix entries decay “fast enough” then its inverse inherits such property

•	 Take advantage of theory on norm-controlled inversion (Grochenig and Klotz 2014, Fang and Shin 2020)



RadGP: provable approximation accuracy Y. Zhu, M. Peruzzi, C. Li & D.B. Dunson (2022)
Radial Neighborss for Provably Accurate Scalable Approximations of Gaussian Processes 
https://arxiv.org/abs/2211.14692

•	 If minimal separation distance q and approximation radius are fixed,  

															               then approximation accuracy will not improve with increasing n

•	 When minimal separation distance q is fixed, if the GP covariance decays fast enough 

															               then we can be arbitrarily accurate for any n by increasing the approximation radius

•	 If minimal separation distance q decreases with increasing n,  

															               then a larger approximation radius is required to compensate for near-singular cov. matrix

Examples



R package meshed

meshed::spmeshed targets the following spatial factor model for multivariate outcomes: 
 

											            

yj(`) ⇠ Pj(⌘j(`), ⌧j) j = 1, . . . , q

⌘(`) = XB +⇤v

v(·) ⇠ meshedGP (0,C✓)  
	  
		  where C✓ is a cross-correlation function with indep. Matérn margins, ⇤ a q ⇥ k lower triangular matrix with positive diagonal

Accepting any combination of: 

•	 gridded data, or data at irregular spatial locations
•	 spatial or spatiotemporal data (using Gneiting’s nonseparable space-time correlation)
•	 univariate or multivariate outcomes
•	 spatial misalignment of multivariate outcomes
•	 outcomes of different types (Gaussian, binomial, Poisson, negative binomial, beta)

•	 Works with fast BLAS/Lapack libraries and in parallel using OpenMP if you let it
•	 Compares favorably to spNNGP in univariate settings (spNNGP does not do multivariate)



Looking aheadLooking ahead



Some ideas: application/modeling/computational challenges

ionpath.com

•	 Interest in modeling spatial co-variability of different protein types?

•	 Spatial occurrence of proteins in cells = multivariate spatial latent factor model

•	 Multiple cells or multiple subjects = common factor loadings, possibly hierarchically to borrow strength

•	 Multiple subjects (healthy vs not?): characterize groups via differences in spatial variability. Early detection?

•	 Odd “shape” of cell structures? Use spatial deformation/deep GP. 



Some ideas: application/modeling/computational challenges

•	 Interest in modeling spatial co-variability of different protein types?

•	 Spatial occurrence of proteins in cells = multivariate spatial latent factor model

•	 Multiple cells or multiple subjects = common factor loadings, possibly hierarchically to borrow strength

•	 Multiple subjects (healthy vs not?): characterize groups via differences in spatial variability. Early detection?

•	 Odd “shape” of cell structures? Use spatial deformation/deep GP. Scalability to high resolution cell data? TBD.



Thank you! 

M. Peruzzi, S. Banerjee & A.O. Finley (2022)
	 Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitoned Domains.
	 Journal of the American Statistical Association 117(538): 969-982.  
	 https://www.tandfonline.com/doi/full/10.1080/01621459.2020.1833889
M. Peruzzi & D.B. Dunson (2022)
	 Spatial Multivariate Trees for Big Data Bayesian Regression.
	 Journal of Machine Learning Research 23(17):1−40. 
	 https://www.jmlr.org/papers/v23/20-1361.html
M. Peruzzi & D.B. Dunson (2022)
	 Spatial Meshing for General Bayesian Multivariate Models. 
	 https://arxiv.org/abs/2201.10080
M. Peruzzi, S. Banerjee, D.B. Dunson & A.O. Finley (2021)
	 Grid-Parametrize-Split (GriPS) for Improved Scalable Inference in Spatial Big Data Analysis. 
	 https://arxiv.org/abs/2101.03579
Y. Zhu, M. Peruzzi, C. Li, D.B. Dunson (2022)
	 Radial Neighbors for Provably Accurate Scalable Approximations of Gaussian Processes. 
	 https://arxiv.org/abs/2211.14692
B. Jin, M. Peruzzi, D.B. Dunson (2021)
	 Bag of DAGs: Flexible & Scalable Modeling of Spatiotemporal Dependence. 
	 https://arxiv.org/abs/2112.11870
N. Neupane, M. Peruzzi, L. Ries, A. Arab, S. J. Mayor, J. C. Withey, A. O. Finley (2022)
	 A novel model to accurately predict continental-scale green-up timing.
	 International J. of Applied Earth Observation and Geoinformation 108:102747 
	 https://doi.org/10.1016/j.jag.2022.102747

contact:   michele.peruzzi@duke.edu



GriPS: Gridding and parameter expansion for better MCMC M. Peruzzi, S. Banerjee, D.B. Dunson & A.O. Finley (2021)
Grid-Parametrize-Split (GriPS) for Improved Scalable Inference in Spatial Big Data Analysis. 
https://arxiv.org/abs/2101.03579

Application: LiDAR data
•	 Tanana forest, Alaska: 2 outcomes at 2.5M locations
•	 Forest cover and canopy height
•	 Data measured at thin strips, 9km apart
•	 Difficult to set up usual NNGP or a standard QMGP
•	 Take advantage of modeling flexibility of MGPs
•	 Highly customized setup for MGPs for under 48h compute time
•	 Custom grid



GriPS: Gridding and parameter expansion for better MCMC M. Peruzzi, S. Banerjee, D.B. Dunson & A.O. Finley (2021)
Grid-Parametrize-Split (GriPS) for Improved Scalable Inference in Spatial Big Data Analysis. 
https://arxiv.org/abs/2101.03579

Application: LiDAR data
•	 Tanana forest, Alaska: 2 outcomes at 2.5M locations
•	 Forest cover and canopy height
•	 Highly customized setup for MGPs for under 48h compute time
•	 Custom grid



GriPS: Gridding and parameter expansion for better MCMC

•	 Matérn covariance weakly identifiable: high posterior dependence between σ2, φ, ⌫

•	 Targeting the usual identifiable LMC model y(`) = X(`)>β +⇤w(`) + "(`) we actually run MCMC on the expanded model:

y = Xβ +Zr + "0 ; "0 ⇠ N(0,Dn +⌃)

Z = (In ⌦A)H ⌃ = (In ⌦A)R(In ⌦A>)

•	 After running MCMC, postprocess to get original model parameters
•	 Over 10x efficiency in estimating σ2

j , φj in some settings
•	 Takes advantage of the multiple parametrizations of the hierarchical model with latent effects

Extreme case: Noncentered parametrization vs GriPS. No thinning.

M. Peruzzi, S. Banerjee, D.B. Dunson & A.O. Finley (2021)
Grid-Parametrize-Split (GriPS) for Improved Scalable Inference in Spatial Big Data Analysis. 
https://arxiv.org/abs/2101.03579

 A is lower triangular with positive diagonal
 r is a k-variate MGP with independent margins.  
The j-th base covariance is  Cj(·, ·) = σ2

j /φ
2⌫
j ⇢φj ,⌫(·, ·), where ⇢φj ,⌫(·, ·) is Matérn correlation

H and R are derived from kriging relations and allow r to be located on a regular grid



Application: Greenup timing study using MODIS data

Mean peak onset of greenness timing

In-sample residuals

Temperature accumulation effects
Out-of-sample predictions vs linear regression

•	 Vegetation phenology study. “Greenness cycles”
•	 Interest: when there is peak greenness
•	 Vegetation buildup depends on temperature
•	 We consider North American data east of 100W
•	 With high-res satellite data, can make continental-level predictions
•	 Use MGP + temperature accumulation “speed”
•	 1.7 million space-time locations
•	 Predict next 2 years
•	 Large gains relative to same model without spatial random effects 
 
 
 
 
 
 

•	 Future: how does climate change affect greenness cycles?

N. Neupane, M. Peruzzi, L. Ries, A. Arab, S. J. Mayor, J. C. Withey, A. O. Finley (2022)
A novel model to accurately predict continental-scale green-up timing.
International J. of Applied Earth Observation and Geoinformation 108:102747 
https://doi.org/10.1016/j.jag.2022.102747



Looking ahead:  Looking ahead:  
beyond spatial databeyond spatial data



Higher dimensional input spaces

Reality:
•	Correlated inputs (e.g. chemical exposures)
•	Extreme case: some inputs on lower dimensional manifold
•	Scalability depends on notion of neighbor
•	Difficult to find “good” neighbors with high dimension input

IDEA:
•	 Take advantage of input structure
•	 Create a 2D input space when a natural one does not exist



Graph Machine Regression

projection

new coordinate system

•	 Project original input space onto a new one of dimension 
2 using PCA (easy!), Laplacian Eigenmaps?, other? 

•	Use projected space as a spatial coordinate system



Graph Machine Regression

+ partition + DAG

the precision matrix is sparse with pattern:

projection
xi vector of predictors, dimension p

f(·) unknown function

"i
iid⇠ N(0, σ2)

yi health outcome/phenotype for subject i

i = 1, . . . , nyi = f(xi) + "i

pmeshed(f) / |fK|− 1
2 exp

⇢
−1

2
f>fK

−1
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Graph Machine Regression

•	  1 outcome
•	  data size ~3000
•	  15 correlated inputs 

using new package gramar (github.com/mkln/gramar)
•	 for univariate outcomes
•	 uses a collapsed sampler
•	  0.017 seconds/iteration (compare with BKMR implementing full GP: 0.838 seconds/iteration, 50x slower) 

Observed data Latent X1-X2 surface

DATA  SURFACE        BART GRAMAR          RFDATA  SURFACE        BART GRAMAR          RF

Recovered surfaces

DATA  SURFACE        BART GRAMAR          RFDATA  SURFACE        BART GRAMAR          RF

GRAMAR RandomForest BART



Some future directions

Other kinds of images Nonstationary data via complex warping

Sleep studies Activity tracking


