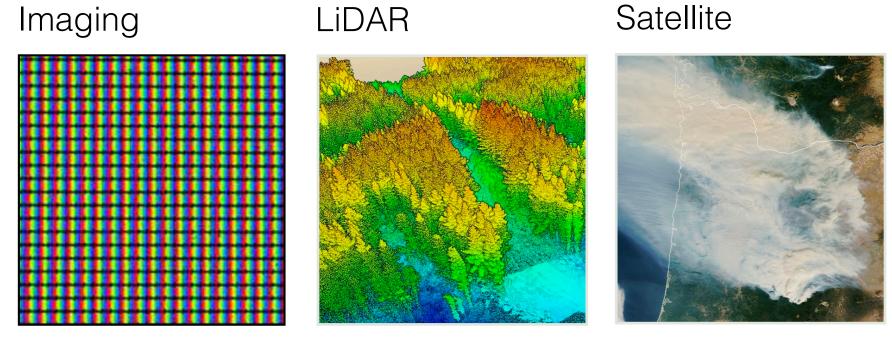


Spatial multivariate data

Features

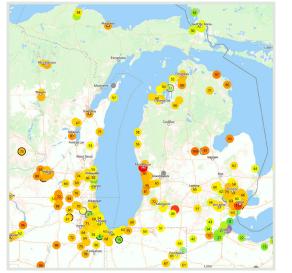
- Several variables observed over 2-D domain (earth)
- Spatial dependence
 - "Near things are more related than distant things"
- Cross-variable dependence
 - temperature, humidity
 - industrial pollutants of water
 - air quality

Sources



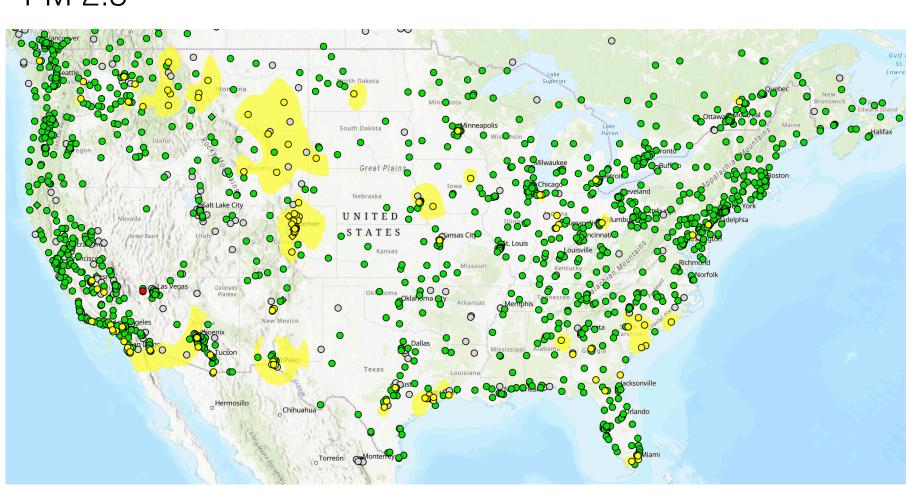
Home sensors

Weather stations

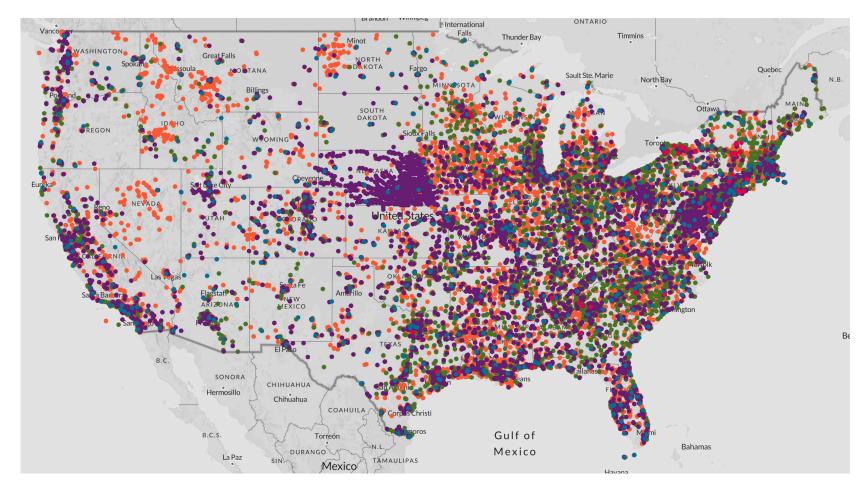


Examples

Lead Lead Solubility Potential (dissolved) of Untreated Groundwater from U.S. Domestic and Public-Supply Wells and Springs



PFAS



Spatial multivariate data

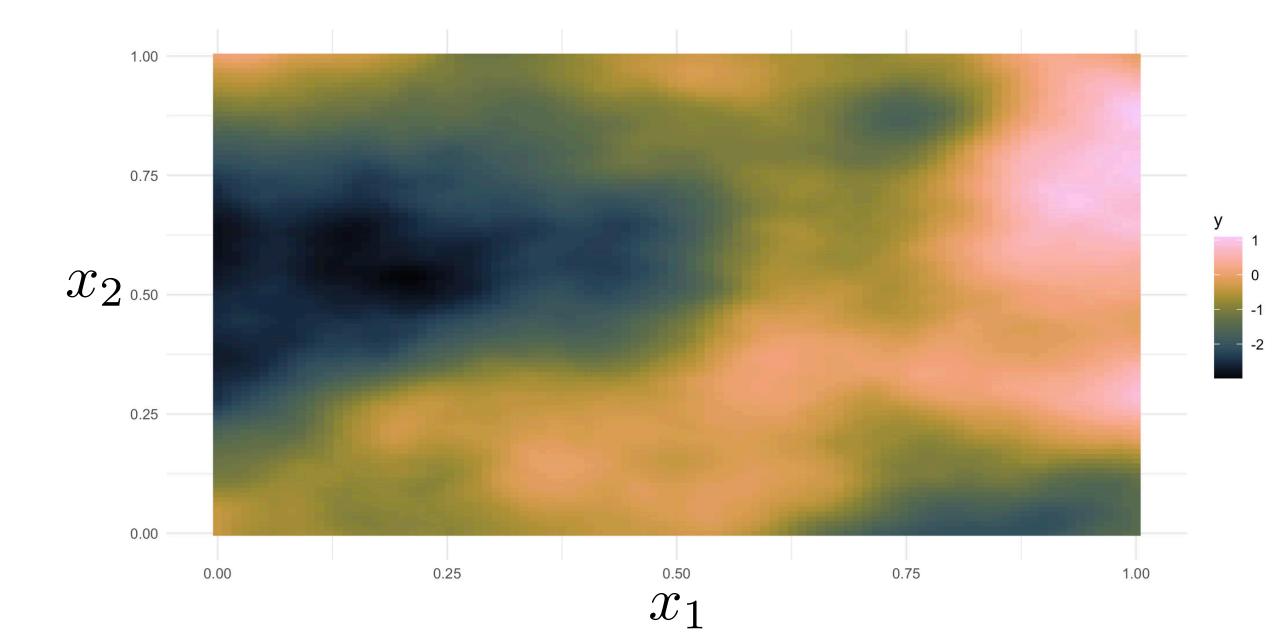
Features

- Several variables observed over 2-D domain (earth)
- Spatial dependence
 - » "Near things are more related than distant things"
- Cross-variable dependence
 - » temperature, humidity
 - » industrial pollutants of water
 - » air quality

Joint model of many variables

$$y_i(\boldsymbol{x}) = f_i(\boldsymbol{x}) + \boldsymbol{\varepsilon}_i(\boldsymbol{x})$$

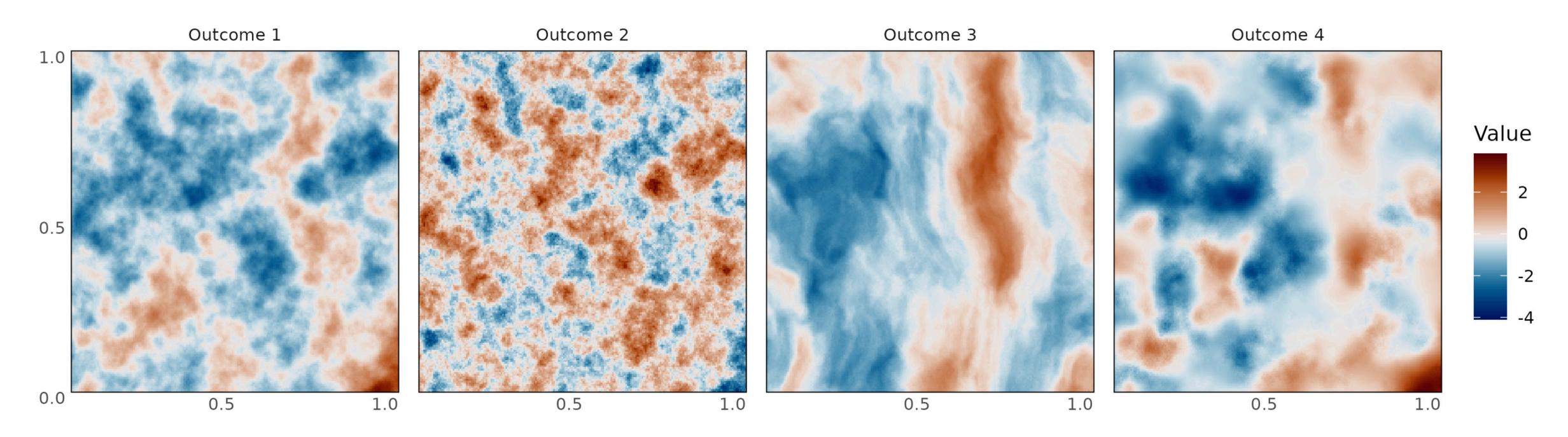
- $oldsymbol{x}$ coordinates in the spatial domain
- $f_i(\cdot)$ unknown function that explains outcome $y_i(\cdot)$
- Gaussian error without spatial or cross-variable dependence $arepsilon_i(\cdot) \overset{iid}{\sim} N(0,\sigma^2)$
- Multivariate dependence: the functions $f_i(\cdot), i=1,\ldots,q$ are **related to each other**
- Deal with missing data
- Resolve **confounding** issues
- Learn graphical/network structure



Two inputs with a non-linear interaction effect on 1 outcome variable

Spatial multivariate data: example

What spatial cross-correlation may look like



Spatial multivariate data: broader interpretation

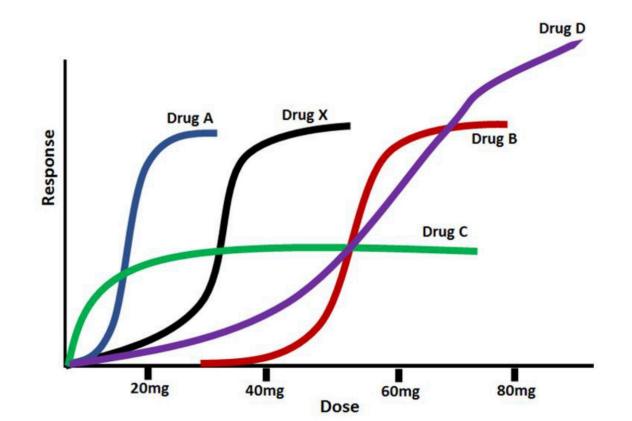
Features

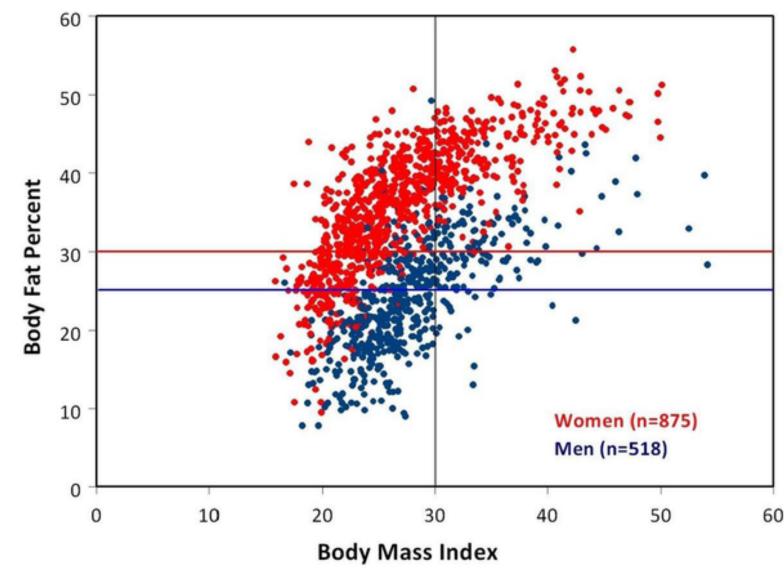
- Variables observed over p-dimensional (feature space)
- All may depend on inputs
 - » dosage of drugs
 - » mixture of exposures
 - » interactions
- Multiple outcomes are related to each other
 - » BMI, cardiovascular health, ...

Joint model of many variables

$$y_i(\boldsymbol{x}) = f_i(\boldsymbol{x}) + \boldsymbol{\varepsilon}_i(\boldsymbol{x})$$

- $m{x}$ coordinates in feature domain (p dimensions)
- \cdot $f_i(\cdot)$ unknown function that explains outcome $y_i(\cdot)$
- Gaussian error without spatial or cross-variable dependence $arepsilon_i(\cdot) \overset{iid}{\sim} N(0,\sigma^2)$
- Multivariate dependence: the functions $f_i(\cdot), i=1,\ldots,q$ are **related to each other**
- Deal with missing data
- Resolve **confounding** issues
- Learn graphical/network structure

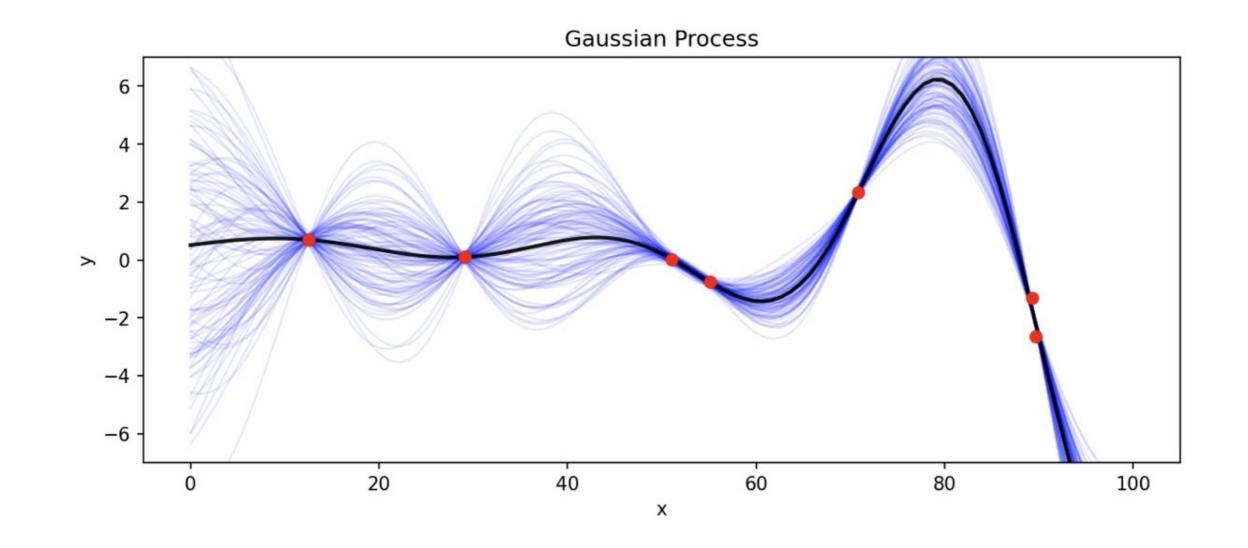




From univariate to multi-output Gaussian Processes

- (Univariate) GP is a prior process over functions
- Completely determined by the covariance function or kernel $K_{ heta}(\cdot,\cdot)$
- Parametric model for $K_{ heta}(\cdot,\cdot)$ leads to interpretable outputs (e.g., ARD kernel and length scales)

$$f(\cdot) \sim GP(0, K_{\theta}(\cdot, \cdot))$$



- Multivariate or multi-output GP is prior over vector-valued functions
- \cdot Completely determined by the cross-covariance matrix function $oldsymbol{C}_{ heta}(\cdot,\cdot)$
- Parametric model for $C_{\theta}(\cdot,\cdot)$ leads to interpretation on each margin $f_r(\cdot)$, as well as cross-dependence, i.e. how $f_r(\cdot)$ is related to $f_s(\cdot), \quad r \neq s$

$$egin{bmatrix} f_1(\cdot) \ dots \ f_q(\cdot) \end{bmatrix} = m{f}(\cdot) \sim GP(m{0}, m{C}_{ heta}(\cdot, \cdot))$$

Multi-output Gaussian Processes and cross-covariance matrix functions

$$\begin{bmatrix} f_1(\cdot) \\ \vdots \\ f_q(\cdot) \end{bmatrix} = \boldsymbol{f}(\cdot) \sim GP(\boldsymbol{0}, \boldsymbol{C}_{\theta}(\cdot, \cdot))$$

- Multivariate or multi-output GP is prior over vector-valued functions
- ullet Completely determined by the cross-covariance matrix function $m{C}_ heta(\cdot,\cdot): \Re^d imes \Re^d o \mathcal{M}$
- $oldsymbol{C}_{ heta}$ is a parametric model of cross-covariance, i.e. by construction we have

$$C_{\theta}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \operatorname{cov}\left\{\boldsymbol{y}(\boldsymbol{x}_i), \boldsymbol{y}(\boldsymbol{x}_j)\right\},$$

which is a symmetric positive definite matrix of size q imes q

- We choose the function $oldsymbol{C}_{ heta}$ and then estimate its parameters heta using the data
- Extends covariance function or kernel function to multivariate setting
- Equivalent to joint modeling of q(q+1)/2 covariance functions
- Must be a valid cross-covariance matrix function some conditions need to hold
- Determines all spatial and cross-variable dependence under a GP
- For non-Gaussian or multi-type data, use latent GP in GLMM

Summary so far

Multivariate GPs are useful!

- Nonlinear effect of exposures (latitude, longitude, covariates) on outcomes
- Interaction effects of exposures on outcomes
- Joint model of exposures' effects on multiple related outcomes

as long as we have a cross-covariance matrix function $oldsymbol{C}_{ heta}(\cdot,\cdot)$ that is

- valid (!!)
- interpretable
- flexible
- useful downstream in many different settings

Unfortunately

- **Difficult** to create valid cross-covariance matrix functions
- Some valid specifications lead to
 - » difficult computations
 - » lack identifiability of parameters
 - » lack easy interpretations
- Very flexible models work only for small q (e.g., multivariate Matérn model)
- Scalable models are inflexible and not very interpretable

Example: linear coregionalization aka spatial factor model

Matheron 1982, Wackernagel 2003, Schmidt & Gelfand 2003

- Λ is a "tall and skinny" factor loadings matrix of size $q imes k, \quad k < q$
- Each $ho_h(\cdot,\cdot), h=1,\ldots,k$ is a univariate correlation function
- Easy to build!
- Dimension reduction by choosing small k
- By far the most used model of cross-covariance
 - » model nonstationarity Gelfand et al. 2004
 - » spatially varying coefficients models Gelfand et al. 2003 and Reich et al. 2010
 - » space-time data Berrocal et al. 2010, De laco et al. 2019
 - » for non-Gaussian data Peruzzi & Dunson 2024
 - » scalable spatial factor models Taylor-Rodriguez et al. 2019, Zhang & Banerjee 2022
 - » applications in many fields Teh et al. 2005, Finley et al. 2008, Álvarez & Lawrence 2011, Fricker et al. 2013, Moreno-Muñoz et al. 2018, Liu et al. 2022, Townes & Engelhardt 2023
 - » software Pebesma 2004, Finley et al. 2015, Tikhonov et al. 2020, Finazzi & Fassò 2014, Krainski et al. 2019, Peruzzi 2022

Example: linear coregionalization aka spatial factor model

Matheron 1982, Wackernagel 2003, Schmidt & Gelfand 2003

$$m{C}_{ heta}(m{x}_i,m{x}_j) = m{\Lambda} egin{bmatrix}
ho_1(m{x}_i,m{x}_j) & & & & \ & \ddots & & & \ & &
ho_k(m{x}_i,m{x}_j) \end{bmatrix} m{\Lambda}^ op \ \end{pmatrix}$$

- $oldsymbol{\Lambda}$ is a "tall and skinny" factor loadings matrix of size $q imes k, \quad k < q$
- Each $ho_h(\cdot,\cdot), h=1,\ldots,k$ is a univariate correlation function
- Easy to build!

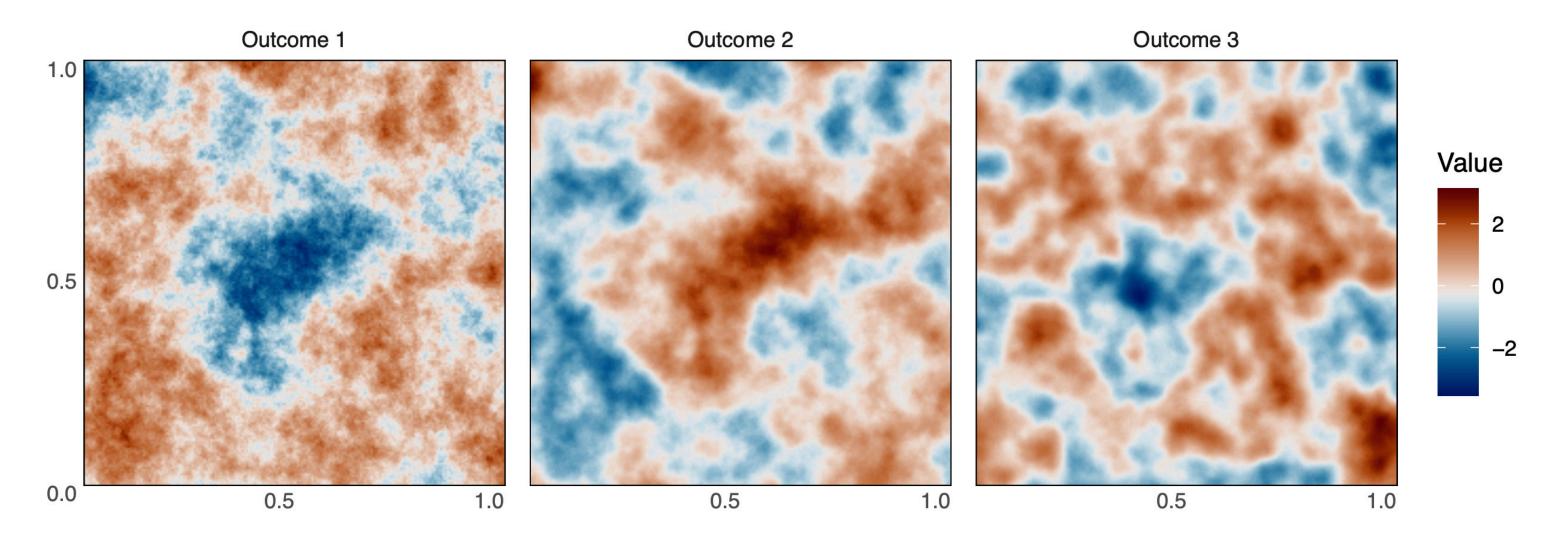
But suffers from major problems!

- Parameters of $ho_h(\cdot,\cdot)$ have non-linear relationships with $C_{rs}(m{x}_i,m{x}_j)= ext{cov}\{y_r(m{x}_i),y_s(m{x}_j)\}$
- Therefore, parameters of $ho_h(\cdot,\cdot)$ are not directly or easily interpretable
- Cannot be used to model outcomes with different smoothness
 - » Smoothness plays important role in spatial confounding settings Gilbert et al 2023
- Cannot be used to estimate networks of spatial variables
- Cannot incorporate measurement error into model must model measurement error separately
- Cannot model outcome-specific spatial characteristics

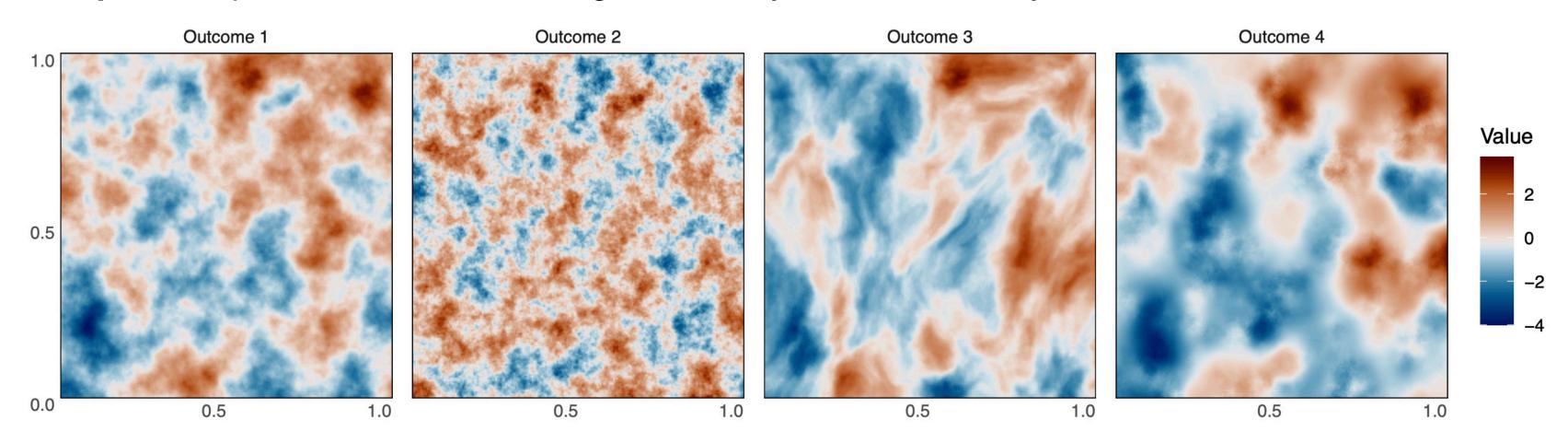
Example: linear coregionalization aka spatial factor model

Matheron 1982, Wackernagel 2003, Schmidt & Gelfand 2003

Cannot be used to model outcomes with different smoothness



• Cannot model outcome-specific spatial characteristics, e.g., stationary vs nonstationary outcomes



If coregionalization does not work, then what do we do?

Multivariate Matérn model

Gneiting et al. 2010, Apanasovich et al. 2012, Emery et al. 2022, Yarger et al. 2024

- » Difficult conditions to check for validity
- » Effectively only works for small q
- » Difficult to extend to non-stationarity or other more complex spatial behavior
- » Cannot use for dimension reduction

Convolution methods

Gaspari & Cohn 1999, Majumdar & Gelfand 2007

- » Computationally intricate
- » May require numerical integration for each element of covariance matrix
- » Cannot use for dimension reduction

IOX-Inside-out cross-covariance: definition

Ingredients

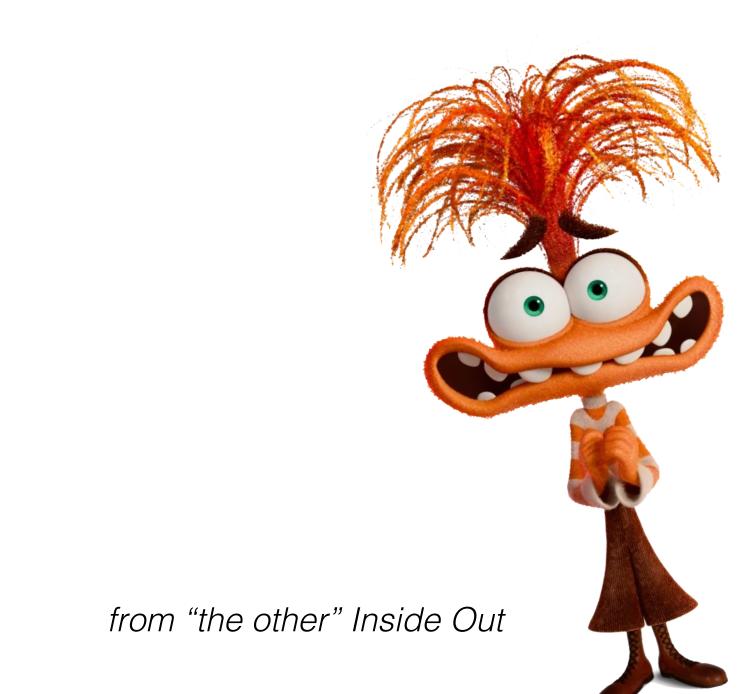
- Specify q univariate correlation functions (some may be the same): $ho_r(\cdot,\cdot)$
- Specify a set of "special" locations \mathcal{S} . Typically, choose this as the set of observed locations
- $oldsymbol{\cdot}$ Compute $oldsymbol{L}_r$ such that $oldsymbol{L}_roldsymbol{L}_r^{oldsymbol{\perp}}=
 ho_r(\mathcal{S})$
- $oldsymbol{\cdot}$ Define $oldsymbol{h}_r(oldsymbol{x}) =
 ho_r(oldsymbol{x}, \mathcal{S})
 ho_r(\mathcal{S})^{-1}$
- Define $e_r(oldsymbol{x}) =
 ho_r(oldsymbol{x}, oldsymbol{x}) oldsymbol{h}_r(oldsymbol{x})
 ho_r(\mathcal{S}, oldsymbol{x})$
- Define $arepsilon(m{x}_i,m{x}_j)=\mathbb{1}_{\{m{x}_i=m{x}_j\}}\sqrt{e_r(m{x}_i)e_s(m{x}_i)}$

Definition

• Define the r,s element of $oldsymbol{C}_{ heta}(oldsymbol{x}_i,oldsymbol{x}_j)$ as

$$oldsymbol{C}_{ heta}(oldsymbol{x}_i, oldsymbol{x}_j) = \sigma_{rs} \left[oldsymbol{h}_r(oldsymbol{x}_i) oldsymbol{L}_r oldsymbol{L}_s^ op oldsymbol{h}_s(oldsymbol{x}_j)^ op + arepsilon(oldsymbol{x}_i, oldsymbol{x}_j)
ight]$$

- Entirely new model of cross-covariance
- · Valid cross-covariance matrix function



IOX-Inside-out cross-covariance: it's simpler than it looks...

- Specify a set of "special" locations \mathcal{S} . Typically equal to the set of **observed locations**
- When evaluated at $\mathcal{S}_{...}$

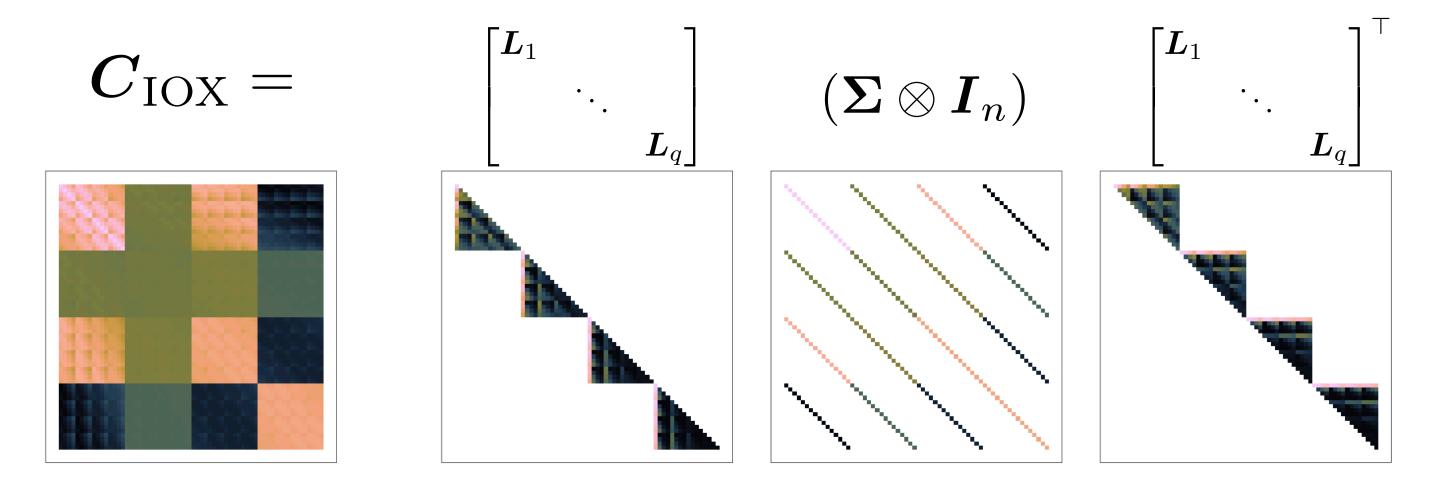
$$oldsymbol{C}_{ ext{IOX}} = egin{bmatrix} oldsymbol{L}_1 & & & \ & \ddots & & \ & & oldsymbol{L}_q \end{bmatrix} oldsymbol{(\Sigma \otimes oldsymbol{I}_n)} egin{bmatrix} oldsymbol{L}_1 & & & \ & \ddots & \ & & oldsymbol{L}_q \end{bmatrix}^{ ext{T}}$$

Compare with coregionalization (LMC)

$$m{C}_{ ext{LMC}} = (m{\Lambda} \otimes m{I}_n) egin{bmatrix}
ho_1(\mathcal{S}) & & & & \ & \ddots & & & \ & &
ho_k(\mathcal{S}) \end{bmatrix} (m{\Lambda}^ op \otimes m{I}_n)$$

IOX-Inside-out cross-covariance: it's simpler than it looks...

- Specify a set of "special" locations S. Typically equal to the set of observed locations
- When evaluated at $\mathcal{S}_{...}$



- It is "inside-out" compared to coregionalization!
- Essentially the same ingredients

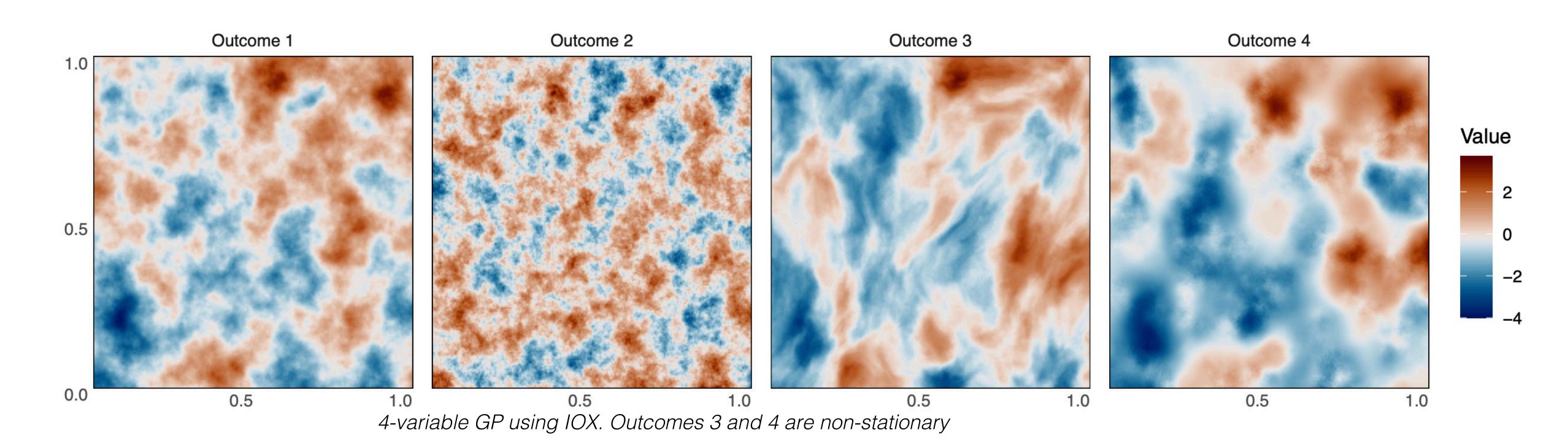
me ingredients
$$m{C}_{ ext{LMC}} = m{(}m{\Lambda} \otimes m{I}_nm{)} egin{bmatrix}
ho_1(\mathcal{S}) & & & & \\
ho_1(\mathcal{S}) & & & & \\
ho_2(\mathcal{S}) & & & & \\
ho_2(\mathcal{S}) & & & & \\
ho_3(\mathcal{S}) & & & & \\
ho_4(\mathcal{S}) & & & & \\
ho_2(\mathcal{S}) & & & & \\
ho_3(\mathcal{S}) & & & \\
ho_4(\mathcal{S}) &$$

key to interpret:

$$oldsymbol{\Lambda} oldsymbol{\Lambda} oldsymbol{\Lambda}^ op = oldsymbol{\Sigma} \ oldsymbol{L}_r oldsymbol{L}_r^ op =
ho_r(\mathcal{S})$$

IOX-Inside-out cross-covariance: features

- Inside-out cross-covariance is valid if each of the univariate functions are valid: **simple**!
- $\cdot
 ho_r(\cdot,\cdot)$ is (essentially) the marginal covariance for the r-th outcome
- Direct interpretation of its parameters
- Can be used to introduce outcome specific features
- Example: only some outcomes are affected by some exposures
- Example: some outcomes exhibit non-stationarity
- Example: some outcomes have different smoothness



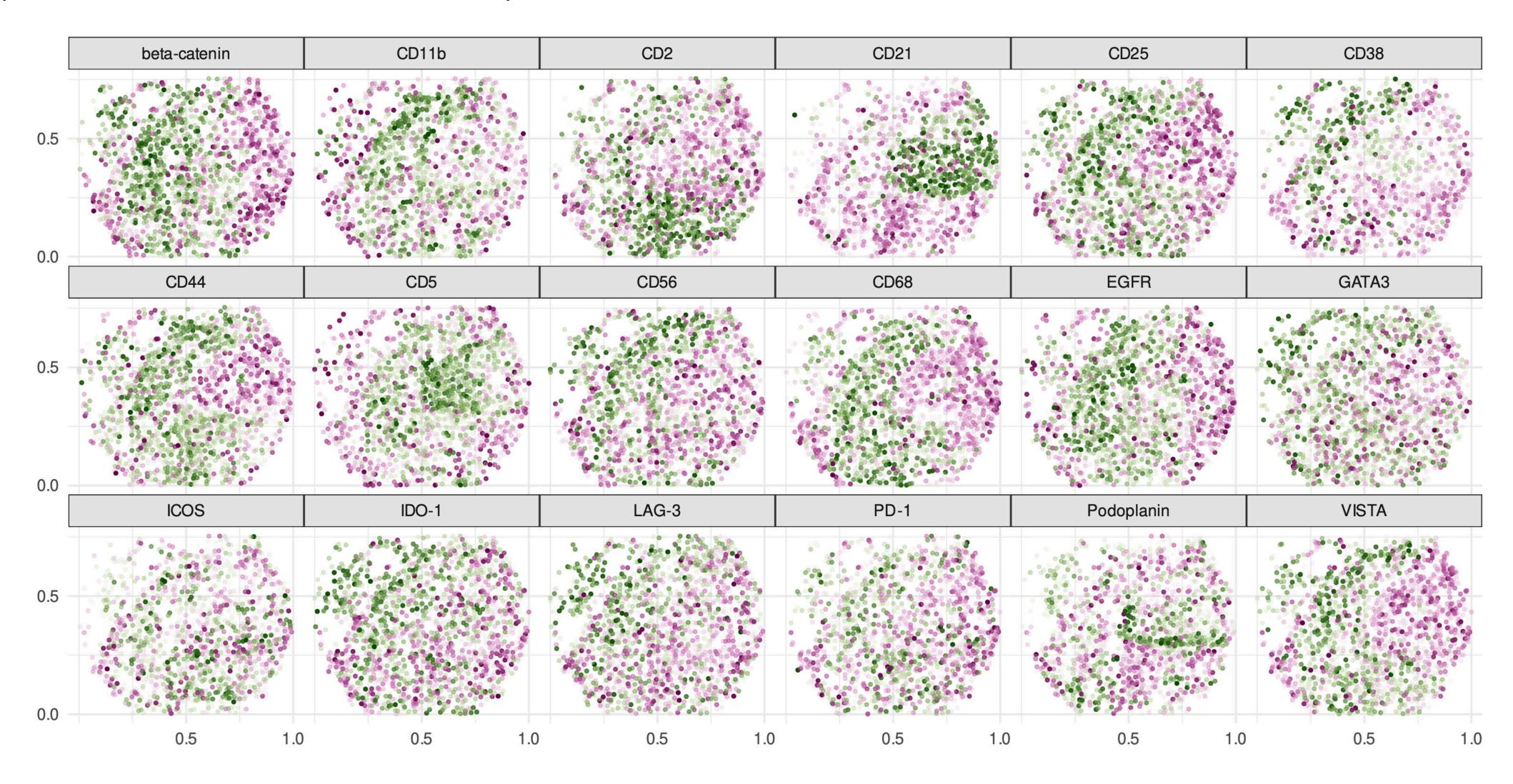
IOX-Inside-out cross-covariance: features

- Simple to build: inside-out cross-covariance is valid if each of the univariate functions are valid easy.
- $ho_r(\cdot,\cdot)$ is (essentially) the marginal covariance for the r-th outcome
- Direct interpretation of all parameters, e.g., outcome-specific length-scales of exposures
- Easy to specify **priors** for the parameters
- Can be used to introduce outcome specific features
- Example: only some outcomes are affected by some exposures
- Example: some outcomes exhibit non-stationarity
- Example: some outcomes have different smoothness
- Can be used for dimension reduction
- Can incorporate outcome-specific measurement error (nugget effect)
- Can be paired with scalable methods for GPs (low-rank, NNGP, RadGP, MGP, MRA...)
- Multiple avenues for computations
- Can model networks of spatial outcomes (future work)
- As easy to implement as a coregionalization model, but resolves most shortcomings

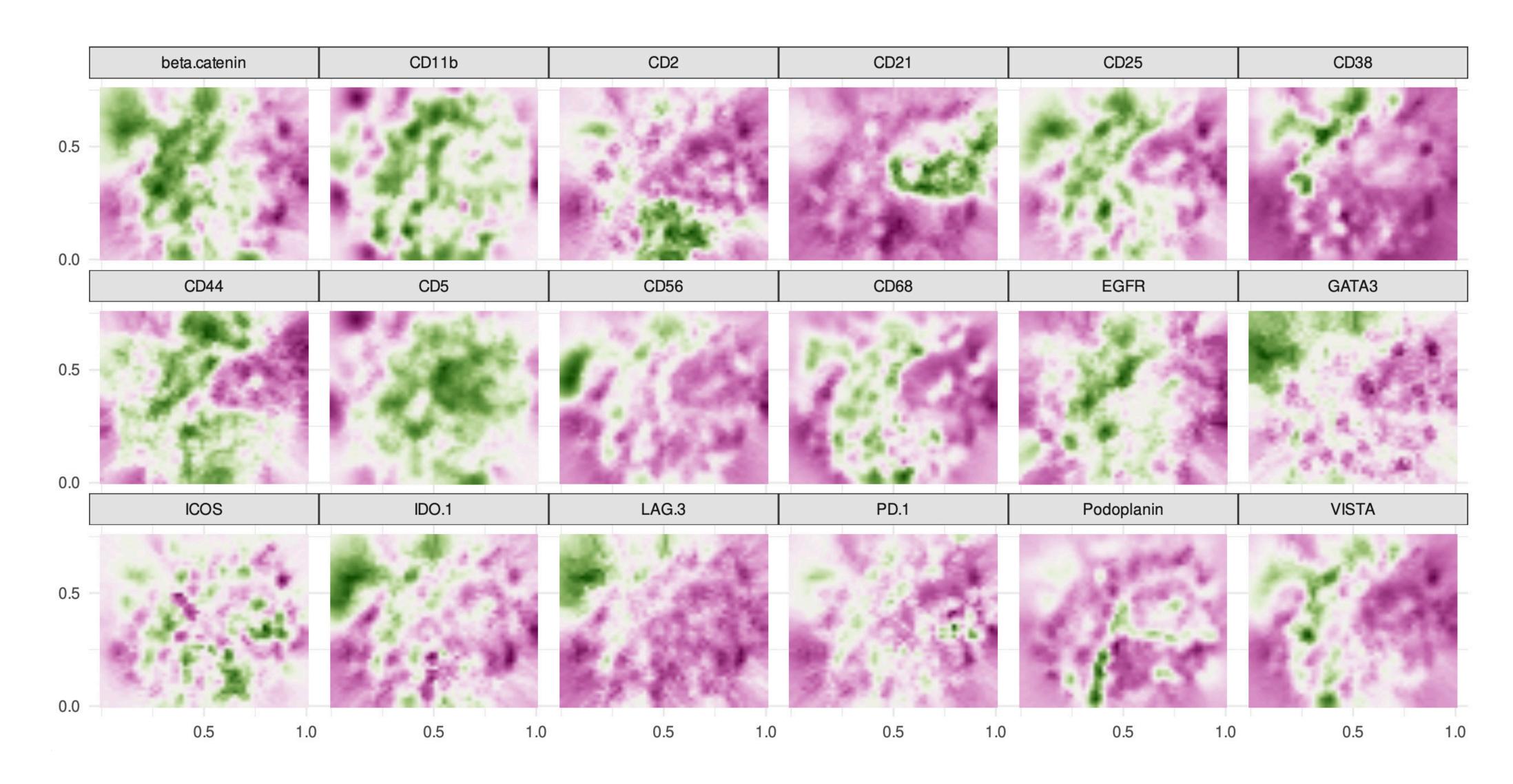
Shortcomings of IOX:

- Must choose ${\cal S}$
- All cross-covariances $oldsymbol{C}_{ij}(\cdot,\cdot)$ are derived indirectly and are less interpretable
- Still, $m{C}_{ij}(\cdot,\cdot)$ in IOX is as interpretable as in a coregionalization model: must use plots.
- Intuition: IOX prioritizes marginal inference while accounting for cross-variable dependence

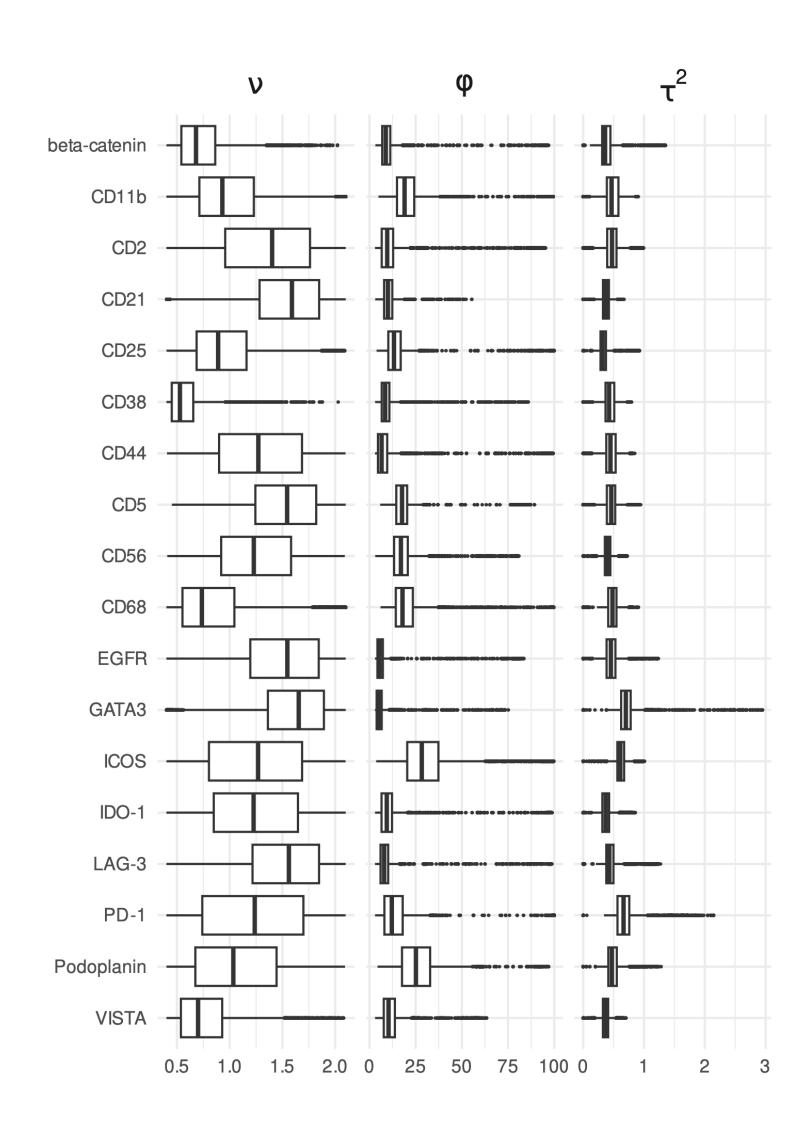
- Take 1 patient, look at biomarker expression in tissue biopsy
- Total of 18 biomarkers with spatial dependence
- 2,873 spatial locations. Effective dimension of the problem: 51,714



- Estimated latent maps for biomarker expression
- Fitting time: 22 minutes



• Estimated biomarker-specific spatial parameters (smoothness, spatial decay, error variance)



• Estimated cross-correlation between biomarkers, at zero spatial distance

