
Inside-out cross-covariance  
for spatial multivariate data

Michele Peruzzi
Assistant Professor of Biostatistics 
University of Michigan–Ann Arbor



Spatial multivariate dataSpatial multivariate data
Imaging LiDAR Satellite

Home sensors Weather stations

Lead PM 2.5 PFAS

Sources

Examples

Features
•	 Several variables observed over 2-D domain (earth)
•	 Spatial dependence

	» “Near things are more related than distant things”
•	 Cross-variable dependence

	» temperature, humidity
	» industrial pollutants of water
	» air quality



Spatial multivariate dataSpatial multivariate data

Joint model of many variables

•	 Several variables observed over 2-D domain (earth)
•	 Spatial dependence

	» “Near things are more related than distant things”
•	 Cross-variable dependence

	» temperature, humidity
	» industrial pollutants of water
	» air quality

Features

yi(x) = fi(x) + ωi(x)
•	x coordinates in the spatial domain

•	fi(·) unknown function that explains outcome yi(·)
•	 Gaussian error without spatial or cross-variable dependence ωi(·)

iid→ N(0, ε2)
•	 Multivariate dependence: the functions fi(·), i = 1, . . . , q are related to each other
•	 Deal with missing data 
•	 Resolve confounding issues
•	 Learn graphical/network structure

x1

x2

Two inputs with a non-linear interaction effect on 1 outcome variable



Spatial multivariate data: Spatial multivariate data: exampleexample

What spatial cross-correlation may look like



Spatial multivariate data: Spatial multivariate data: broader interpretationbroader interpretation

Features
•	 Variables observed over p-dimensional (feature space)
•	 All may depend on inputs

	» dosage of drugs
	» mixture of exposures
	» interactions

•	 Multiple outcomes are related to each other
	» BMI, cardiovascular health, ...

Joint model of many variables
yi(x) = fi(x) + ωi(x)

•	x coordinates in feature domain (p dimensions)

•	fi(·) unknown function that explains outcome yi(·)
•	 Gaussian error without spatial or cross-variable dependence ωi(·)

iid→ N(0, ε2)
•	 Multivariate dependence: the functions fi(·), i = 1, . . . , q are related to each other
•	 Deal with missing data 
•	 Resolve confounding issues
•	 Learn graphical/network structure



FromFrom univariate  univariate toto multi-output  multi-output Gaussian ProcessesGaussian Processes




f1(·)

...
fq(·)



 = f(·) → GP (0,Cω(·, ·))

f(·) → GP (0,Kω(·, ·))
•	 (Univariate) GP is a prior process over functions
•	 Completely determined by the covariance function or kernel Kω(·, ·)
•	 Parametric model for Kω(·, ·) leads to interpretable outputs (e.g., ARD kernel and length scales)

•	 Multivariate or multi-output GP is prior over vector-valued functions

•	 Completely determined by the cross-covariance matrix function Cω(·, ·)
•	 Parametric model for Cω(·, ·) leads to interpretation on each margin fr(·), 
	 as well as cross-dependence, i.e. how fr(·) is related to fs(·), r →= s



Multi-output Gaussian Processes Multi-output Gaussian Processes andand cross-covariance matrix functions cross-covariance matrix functions




f1(·)

...
fq(·)



 = f(·) → GP (0,Cω(·, ·))

•	 Multivariate or multi-output GP is prior over vector-valued functions

•	 Completely determined by the cross-covariance matrix function Cω(·, ·) : →d ↑→d ↓ M
•	Cω is a parametric model of cross-covariance, i.e. by construction we have

Cω(xi,xj) = cov {y(xi),y(xj)},
which is a symmetric positive definite matrix of size q → q

•	 We choose the function Cω and then estimate its parameters ω using the data
•	 Extends covariance function or kernel function to multivariate setting
•	 Equivalent to joint modeling of q(q + 1)/2 covariance functions
•	 Must be a valid cross-covariance matrix function – some conditions need to hold
•	 Determines all spatial and cross-variable dependence under a GP 
•	 For non-Gaussian or multi-type data, use latent GP in GLMM 



Summary so farSummary so far

•	 Nonlinear effect of exposures (latitude, longitude, covariates) on outcomes
•	 Interaction effects of exposures on outcomes
•	 Joint model of exposures’ effects on multiple related outcomes

as long as we have a cross-covariance matrix function Cω(·, ·) that is 

•	 valid (!!)
•	 interpretable
•	 flexible
•	 useful downstream in many different settings

Unfortunately
•	 Difficult to create valid cross-covariance matrix functions
•	 Some valid specifications lead to 

	» difficult computations
	» lack identifiability of parameters
	» lack easy interpretations

•	 Very flexible models work only for small q (e.g., multivariate Matérn model)
•	 Scalable models are inflexible and not very interpretable

Multivariate GPs are useful!



Example: Example: linear coregionalization linear coregionalization akaaka spatial factor model spatial factor model

Cω(xi,xj) = !




ω1(xi,xj)

. . .
ωk(xi,xj)



!→

•	! is a “tall and skinny” factor loadings matrix of size q → k, k < q
•	 Each ωh(·, ·), h = 1, . . . , k is a univariate correlation function
•	 Easy to build! 
•	 Dimension reduction by choosing small k
•	 By far the most used model of cross-covariance

	» model nonstationarity Gelfand et al. 2004

	» spatially varying coefficients models Gelfand et al. 2003 and Reich et al. 2010

	» space-time data Berrocal et al. 2010, De Iaco et al. 2019

	» for non-Gaussian data Peruzzi & Dunson 2024

	» scalable spatial factor models Taylor-Rodriguez et al. 2019, Zhang & Banerjee 2022

	» applications in many fields Teh et al. 2005, Finley et al. 2008, Álvarez & Lawrence 2011, Fricker et al. 2013,  
											                  Moreno-Muñoz et al. 2018, Liu et al. 2022, Townes & Engelhardt 2023

	» software Pebesma 2004, Finley et al. 2015, Tikhonov et al. 2020, Finazzi & Fassò 2014, Krainski et al. 2019, Peruzzi 2022

Matheron 1982, Wackernagel 2003, Schmidt & Gelfand 2003



Example: Example: linear coregionalization linear coregionalization akaaka spatial factor model spatial factor model

Cω(xi,xj) = !




ω1(xi,xj)

. . .
ωk(xi,xj)



!→

•	! is a “tall and skinny” factor loadings matrix of size q → k, k < q
•	 Each ωh(·, ·), h = 1, . . . , k is a univariate correlation function
•	 Easy to build! 

•	 Parameters of ωh(·, ·) have non-linear relationships with Crs(xi,xj) = cov{yr(xi), ys(xj)}
•	 Therefore, parameters of ωh(·, ·) are not directly or easily interpretable
•	 Cannot be used to model outcomes with different smoothness

	» Smoothness plays important role in spatial confounding settings Gilbert et al 2023

•	 Cannot be used to estimate networks of spatial variables
•	 Cannot incorporate measurement error into model – must model measurement error separately
•	 Cannot model outcome-specific spatial characteristics

But suffers from major problems!

Matheron 1982, Wackernagel 2003, Schmidt & Gelfand 2003



Example: Example: linear coregionalization linear coregionalization akaaka spatial factor model spatial factor model

•	 Cannot be used to model outcomes with different smoothness

•	 Cannot model outcome-specific spatial characteristics, e.g., stationary vs nonstationary outcomes

Matheron 1982, Wackernagel 2003, Schmidt & Gelfand 2003



If If coregionalization does not workcoregionalization does not work, then what do we do?, then what do we do?

•	 Multivariate Matérn model  
Gneiting et al. 2010, Apanasovich et al. 2012, Emery et al. 2022, Yarger et al. 2024

	» Difficult conditions to check for validity
	» Effectively only works for small q
	» Difficult to extend to non-stationarity or other more complex spatial behavior
	» Cannot use for dimension reduction

•	 Convolution methods  
Gaspari & Cohn 1999, Majumdar & Gelfand 2007

	» Computationally intricate
	» May require numerical integration for each element of covariance matrix
	» Cannot use for dimension reduction



IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: definitiondefinition

•	 Entirely new model of cross-covariance
•	 Valid cross-covariance matrix function

•	 Define the r, s element of Cω(xi,xj) as

Cω(xi,xj) = ωrs

[
hr(xi)LrL

→
s hs(xj)

→ + ε(xi,xj)
]

•	 Specify q univariate correlation functions (some may be the same): ωr(·, ·)
•	 Specify a set of “special” locations S. Typically, choose this as the set of observed locations

•	 Compute LrL
→
r = ωr(S) such that LrL

→
r = ωr(S)

•	 Define hr(x) = ωr(x,S)ωr(S)→1 

•	 Define er(x) = ωr(x,x)→ hr(x)ωr(S,x)
•	 Define ω(xi,xj) = 1{xi=xj}

√
er(xi)es(xi)

Ingredients

Definition

from “the other” Inside Out



IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: it’s simpler than it looks...it’s simpler than it looks...

•	 Specify a set of “special” locations S. Typically equal to the set of observed locations
•	 When evaluated at S...

CIOX =




L1

. . .
Lq



 (!→ In)




L1

. . .
Lq





→

•	 Compare with coregionalization (LMC)

CLMC = (!→ In)




ω1(S)

. . .
ωk(S)



 (!→ → In)



IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: it’s simpler than it looks...it’s simpler than it looks...
•	 Specify a set of “special” locations S. Typically equal to the set of observed locations
•	 When evaluated at S...

CIOX =




L1

. . .
Lq



 (!→ In)




L1

. . .
Lq





→

•	 It is “inside-out” compared to coregionalization! 
•	 Essentially the same ingredients

CLMC = (!→ In)




ω1(S)

. . .
ωk(S)



 (!→ → In)

CIOX =




L1

. . .
Lq



 (!→ In)




L1

. . .
Lq





→

CIOX =




L1

. . .
Lq



 (!→ In)




L1

. . .
Lq





→

CIOX =




L1

. . .
Lq



 (!→ In)




L1

. . .
Lq





→

CLMC = (!→ In)




ω1(S)

. . .
ωk(S)



 (!→ → In)CLMC = (!→ In)




ω1(S)

. . .
ωk(S)



 (!→ → In)CLMC = (!→ In)




ω1(S)

. . .
ωk(S)



 (!→ → In)

!!→ = ”
LrL

→
r = ωr(S)

key to interpret:



IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: featuresfeatures

•	 Inside-out cross-covariance is valid if each of the univariate functions are valid: simple!

•	ωr(·, ·) is (essentially) the marginal covariance for the r-th outcome
•	 Direct interpretation of its parameters
•	 Can be used to introduce outcome specific features
•	 Example: only some outcomes are affected by some exposures
•	 Example: some outcomes exhibit non-stationarity
•	 Example: some outcomes have different smoothness

4-variable GP using IOX. Outcomes 3 and 4 are non-stationary



IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: featuresfeatures

•	 Simple to build: inside-out cross-covariance is valid if each of the univariate functions are valid – easy.

•	ωr(·, ·) is (essentially) the marginal covariance for the r-th outcome
•	 Direct interpretation of all parameters, e.g., outcome-specific length-scales of exposures
•	 Easy to specify priors for the parameters
•	 Can be used to introduce outcome specific features
•	 Example: only some outcomes are affected by some exposures
•	 Example: some outcomes exhibit non-stationarity
•	 Example: some outcomes have different smoothness
•	 Can be used for dimension reduction
•	 Can incorporate outcome-specific measurement error (nugget effect)
•	 Can be paired with scalable methods for GPs (low-rank, NNGP, RadGP, MGP, MRA...)
•	 Multiple avenues for computations 
•	 Can model networks of spatial outcomes (future work)
•	 As easy to implement as a coregionalization model, but resolves most shortcomings 
 
Shortcomings of IOX:
•	 Must choose S
•	 All cross-covariances Cij(·, ·) are derived indirectly and are less interpretable
•	 Still, Cij(·, ·) in IOX is as interpretable as in a coregionalization model: must use plots.
•	 Intuition: IOX prioritizes marginal inference while accounting for cross-variable dependence



IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: CODEX colorectal cancer dataCODEX colorectal cancer data
•	 Take 1 patient, look at biomarker expression in tissue biopsy
•	 Total of 18 biomarkers with spatial dependence
•	 2,873 spatial locations. Effective dimension of the problem: 51,714



•	 Estimated latent maps for biomarker expression
•	 Fitting time: 22 minutes

IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: CODEX colorectal cancer dataCODEX colorectal cancer data



•	 Estimated biomarker-specific spatial parameters (smoothness, spatial decay, error variance)

IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: CODEX colorectal cancer dataCODEX colorectal cancer data



•	 Estimated cross-correlation between biomarkers, at zero spatial distance

IOX–Inside-out cross-covariance: IOX–Inside-out cross-covariance: CODEX colorectal cancer dataCODEX colorectal cancer data



Summary, future work, commentsSummary, future work, comments

Preprint:  
M Peruzzi (2024). Inside-out cross-covariance for spatial multivariate data.  
https://arxiv.org/abs/2412.12407

Questions? 

peruzzi@umich.edu

•	 IOX is a powerful new cross-covariance model
•	 Flexible, interpretable, scalable
•	 Easy to replace coregionalization/factor models
•	 Many possible avenues for extensions and applications

	» joint modeling of variables to resolve confounding
	» network learning
	» non-stationary modeling
	» outcome-specific variable selection in joint models


