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Introduction: spatial multivariate data

Spatial multivariate data
•	at each location s we observe a random vector of dimension q

•	spatial dependence and cross-variable dependence

Examples
•	community ecology

•	remote sensing

•	climate data

•	multiplexed imaging data of tissue biopsy, “omics” data



Introduction: spatial multivariate data

Example: satellite imaging
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Example: microimmunofluorescence of tissue biopsies



Introduction: example
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Introduction: example

Example: simulated data but more complicated
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Introduction: covariance modeling for GPs

Spatial multivariate data
•	at each location s we observe a random vector of dimension q 
                                                                                         

																					                   

Y(s) =




y1(s)

...
yq(s)





•	Gaussian assumption on the process {Y (s) : s → D} leads to multivariate Gaussian Process (GP) model

•	the cross-covariance matrix function fully characterizes a (zero-mean) multivariate GP (Genton & Kleiber 2015): 
 
																				                    C(·, ·) : →d ↑→d ↓ M 
		   where M is the space of all positive semidefinite matrices of size q → q

•	this is our covariance model: we are modeling   cov(Y (s),Y (s→)) = C(s, s→)

•	via C we model all combinations of cov(yr(s), yc(s→)) for r, c = 1, . . . , q



Introduction: covariance modeling for GPs

Cross-covariance matrix function 
•	the cross-covariance matrix function fully characterizes a (zero-mean) multivariate GP (Genton & Kleiber 2015): 
 
																				                    C(·, ·) : →d ↑→d ↓ M 
where M is the space of all positive semidefinite matrices of size q → q

•	via C we model all combinations of cov(yr(s), yc(s→)) for r, c = 1, . . . , q 

Desired features
•	parsimony for large q

•	computational tractability via exploitable structure of sample covariance

•	easy-to-interpret parameters



Linear model of coregionalization / spatial factor model (LMC)

 
•	introduce a matrix A of dimension q → k with elements arc, r = 1, . . . , q; c = 1, . . . , k

•	introduce k correlation functions ωj(·, ·)

•	LMC models all covariances as linear combinations: 
 

																	               
cov{yr(s), yc(s→)} =

k∑

j=1

arjajcωj(s, s
→)

•	suppose S is the set of observed locations. the sample covariance for the nq → 1 vector is 
 
																	                 cov{y} = (A→ In){↑Rj}(A→ → In) 
 
 
 

•	parsimonious for large q

•	computationally tractable via exploitable structure of sample covariance

•	easy-to-interpret parameters???

Rj = ωj(S, S)



LMC pros

LMC is the most popular model for multivariate spatial data:
•	extend for some form of nonstationarity (Gelfand et al. 2004)

•	spatially-varying regression coefficients, typically via separability assumptions (Gelfand et al. 2003 and Reich et al. 2010) 

•	space-time data (Berrocal et al. 2010, De Iaco et al. 2019)

•	used for latent process models for non-Gaussian data (Peruzzi & Dunson 2024) 

•	dimension reduction tool if q is large (Taylor-Rodriguez et al. 2019, Zhang & Banerjee 2022)

•	popular in many fields  
     (see, e.g., Teh et al. 2005, Finley et al. 2008, Álvarez & Lawrence 2011, Fricker et al. 2013, Moreno-Muñoz et al. 2018, Liu et al. 2022, Townes & Engelhardt 2023)

•	Software packages typically use LMCs  
	 (Pebesma 2004, Finley et al. 2015, Tikhonov et al. 2020, Finazzi & Fassò 2014, Krainski et al. 2019, Peruzzi 2022) 



LMC cons

LMC has a few important drawbacks:
•	cannot model outcomes with different smoothness

•	parameters of ωj(·)  are not directly interpretable

•	specifying priors is difficult 

•	cross covariances Crc(·), r →= c are “as important as” marginal covariances Crr(·)
•	difficult to introduce nugget effects in the k = q case

•	poorly understood infill asymptotics

•	lack of easy pipeline for introducing outcome-specific features



LMC alternatives

Multivariate Matérn (Gneiting 2010):
•	each Crc(·), r →= c and Crr(·) is Matérn

•	validity conditions restrict parameter space (Apanasovich & Genton 2012, Emery et all 2022)

•	need more flexible extensions? validity conditions become a huge burden

•	lack of structure in sample covariance matrices

•	most useful for the small q regime 

Latent dimensions (Apanasovich & Genton 2010): 
•	elegant construction

•	lack of structure in sample covariance matrices

•	most useful for the small q regime 

Convolution methods (Gaspari & Cohn 1999, Majumdar & Gelfand 2007):
•	computationally prohibitive

•	most useful for the small q regime 



What covariance model for this simulated example?
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marginally stationary unequal smoothness nonstationary via warp spatially-varying sill

•	4 spatially indexed variables with different degrees of spatial cross-correlation

•	each variable has specific features

•	simulated at a very large number of spatial locations 



Sampling spatial data

Univariate case:
•	choose sampling locations S

•	sample u → N(0, In) 

•	compute L = chol{R} where R = ω(S, S)

•	finally, y = ωLu 

LMC:
•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k  

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	compute vj = Ljuj and stack into matrix V

•	finally, Y = V A→ where A is the factor loadings matrix



Sampling spatial data

Univariate case:
•	choose sampling locations S

•	sample u → N(0, In) 

•	compute L = chol{R} where R = ω(S, S)

•	finally, y = ωLu 

LMC:
•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k  

•	compute Lj = chol{Rj} where Rj = ωj(S, S)
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•	finally, Y = V A→ where A is the factor loadings matrix

generate iid data
introduce spatial correlation
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Sampling the example data

•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k and stack into U

•	compute V = UA→

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	finally, yj = Ljvj (by column) and stack into Y
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Sampling the example data

•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k and stack into U

•	compute V = UA→

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	finally, yj = Ljvj (by column) and stack into Y

generate iid data

introduce spatial correlation

introduce cross-correlation
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How is this different from a LMC?

•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k and stack into U

•	compute V = UA→

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	finally, yj = Ljvj (by column) and stack into Y

LMC:
•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k  

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	compute vj = Ljuj and stack into matrix V

•	finally, Y = V A→ where A is the factor loadings matrix

We are inverting the order of operations: 
first, cross-variable dependence. second, spatial dependence



How is this different from a LMC?

Inside-out construction:
•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k and stack into U

•	compute V = UA→

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	finally, yj = Ljvj (by column) and stack into Y

LMC:
•	choose sampling locations S 

•	sample uj → N(0, In), j = 1, . . . , k  

•	compute Lj = chol{Rj} where Rj = ωj(S, S)

•	compute vj = Ljuj and stack into matrix V

•	finally, Y = V A→ where A is the factor loadings matrix

cov{y} = (A→ In){↑Rj}(A→ → In)

y = vec{Y }

We are inverting the order of operations: 
first, cross-variable dependence. second, spatial dependence

Rj = LjL
→
j

cov{y} = {→Lj}(!↑ In){→L→
j }

! = AA→



...but can this lead to a valid cross-covariance matrix function?



...but can this lead to a valid cross-covariance matrix function?

Inside-Out Cross-covariance (IOX)

YES! 

Ingredients:
•	q valid correlation functions ωj(·, ·)

•	! symmetric positive semidefinite 

•	a set of “reference” locations S

For any pair of locations:

cov{yi(s), yj(s→)} = Cij(s, s
→) = ωij

[
hi(s)LiL

↑
j hj(s

→) + εij(s, s
→)
]

ωij(s, s
→) = 1{s=s→}

√
ri(s, s)rj(s, s)

where:

hi(s) = ωi(s, S)ωi(S, S)
→1 ri(s, s

→) = ωi(s, s
→)→ hi(s)ωs(S, s

→)

no additional constraints on parameter space



Inside-Out Cross-covariance: key properties

Cii(s, s
→) =

{
ωiiεi(s, s

→) if s → S or s→ → S or s = s→,

ωiiεi(s, S)εi(S)
↑1εi(S, s

→) if s, s→ → Sc and s ↑= s→.

•	marginal covariance only depends on ωi(·)

•	like a “predictive process” (Banerjee et al. 2009) with knots S when both s and s’ are not in S

•	easy to interpret, easy to assign priors

•	cross-covariances are not parametrized directly and Cij(s, s
→) → ωij 

•	non-stationarity induced by dependence on S

•	choice of S? default to observed locations

•	outcome-specific features introduced via ωi(·) (eg. nugget effects)

•	GP with IOX lead to efficient Gibbs samplers for response models and latent models

•	new ways to define spatial factor models



GPs with IOX

•	suppose we use IOX as the covariance model for a multivariate GP

•	in GP-IOX, y(s) and y(s→) are conditionally independent given y (i.e. the data at S)

•	let Y be the matrix of observed variables (one per column) and  
		  V the matrix obtained by “spatial whitening” of each column of Y, i.e. vj = L→1

j yj

•	likelihood and full conditional densities have convenient structure: 
 

					   
log p(y | !) = const → n

2
log det(!) +

∑

ij

logL→1
i [j, j]→ 1

2
Tr

(
V !→1V ↑

)

 

						    
log p(yj | y→j) = const +

1

2
log det{Qjjωj(S)→1} → 1

2Qjj
Qj·V

↑V Q↑
j·

     where Q = !→1

•	if n is large, we can use a Vecchia-style approximation to sparsify L→1
i

•	the entirety of GP-IOX depends on L→1
i , we never work with Li in practice

•	factor models target ! directly: seamlessly plug-in any (non-spatial) factor model (unlike LMC!)



GPs with IOX: models and algorithms

Response model  
					     Y (·) → GP-IOX

•	dimension reduction via clustering of ωj(·)

•	update covariance parameters ω as a block or 
		  ωj | ω→j Metropolis-within-Gibbs

•	conditionally conjugate updates for ! available

Latent model  

					   
Y = XB +W +E

W (·) → GP-IOX

•	dimension reduction via low-rank assumption on !

•	block sampler for W  may be slow if n and/or q large

•	better: block-sample W j | W→j or single-site sampler



Application 1: simulated data - setup

•	each dataset n = 2,500 locations, q = 3 outcomes, dimension nq = 7,500

•	60 datasets generated with IOX with Matérn components

•	60 datasets generated with multivariate Matérn
targets: 
•	estimation of  corr{Y (s),Y (s)} (correlation at zero spatial distance)

•	estimation of smoothness, spatial decay, and nuggets for each component



Application 1: simulated data - results

•	each dataset n = 2,500 locations, q = 3 outcomes, dimension nq = 7,500

•	60 datasets generated with IOX with Matérn components

•	60 datasets generated with multivariate Matérn
targets: 
•	estimation of  corr{Y (s),Y (s)} (correlation at zero spatial distance)

•	estimation of smoothness, spatial decay, and nuggets for each component
results:
•	GP-IOX models outperform others in all tasks



Application 1: simulated data - results

•	each dataset n = 2,500 locations, q = 3 outcomes, dimension nq = 7,500

•	60 datasets generated with IOX with Matérn components

•	60 datasets generated with multivariate Matérn
targets: 
•	estimation of  corr{Y (s),Y (s)} (correlation at zero spatial distance)

•	estimation of smoothness, spatial decay, and nuggets for each component 
results:
•	GP-IOX models (mispecified) competitive with the (well specified) multivariate Matérn



Application 2: simulated data - setup

•	each dataset n = 2,500 locations, q = 24 outcomes, dimension nq = 60,000

•	20 datasets generated with IOX

•	20 datasets generated with LMC (k=8)

•	target estimating corr{Y (s),Y (s)} (correlation at zero spatial distance)

•	target predictions at 400 out-of-sample locations



Application 2: simulated data - results

•	GP-IOX outperforms all others in the 20 IOX datasets 

•	GP-LMC does not outperform a non-spatial model in the 20 LMC datasets



Application 2: colorectal cancer data - setup

•	18 protein markers on tissue biopsy slide from 1 patient

•	detection intensity varies in space

•	n = 2,873 spatial locations. nq = 51,714

•	apply severeal GP-IOX models, LMC, and a non-spatial model 



Application 2: colorectal cancer data - results

•	Intensity maps reflect varying ranges, smoothness, variance



Application 2: colorectal cancer data - results

•	Average percentage error in out-of-sample prediction of 2 variables given all others at the same location

•	IOX outperforms others while maintaining good scalability profile

•	LMC must increase number of factors to outperform a simple non-spatial model



Conclusions

•	IOX offers a new way to model multivariate spatial data

•	structured covariance and precision matrices yield scalable algorithms

•	flexibility in modeling outcome-specific features

•	interpretable and direct parameter inference for marginal covariances

•	competitive with multivariate Matérn in small dimensional settings, but can extend to higher-dimensional data

•	competitive with LMC while being more flexible and interpretable

•	software for fitting response & latent GP-IOX via MCMC at github.com/mkln/spiox

•	for more info and references: https://arxiv.org/abs/2412.12407


