# Inside-out cross-covariance for spatial multivariate data

Michele Peruzzi peruzzi@umich.edu



# Introduction: spatial multivariate data

## Spatial multivariate data

- at each location s we observe a random vector of dimension q
- spatial dependence and cross-variable dependence

## Examples

- community ecology
- remote sensing
- climate data
- multiplexed imaging data of tissue biopsy, "omics" data

# Introduction: spatial multivariate data

Example: satellite imaging





# Introduction: spatial multivariate data

Example: microimmunofluorescence of tissue biopsies



# Introduction: example

## Example: simulated data



# Introduction: example

Example: simulated data but more complicated



# Introduction: covariance modeling for GPs

## Spatial multivariate data

• at each location s we observe a random vector of dimension q

$$\mathbf{Y}(s) = egin{bmatrix} y_1(s) \ dots \ y_q(s) \end{bmatrix}$$

- ullet Gaussian assumption on the process  $\{m{Y}(s):s\in\mathcal{D}\}$  leads to multivariate Gaussian Process (GP) model
- the cross-covariance matrix function fully characterizes a (zero-mean) multivariate GP (Genton & Kleiber 2015):

$$C(\cdot,\cdot):\Re^d\times\Re^d\to\mathcal{M}$$

where  $\mathcal{M}$  is the space of all positive semidefinite matrices of size  $q \times q$ 

- this is our covariance model: we are modeling cov(Y(s), Y(s')) = C(s, s')
- via C we model all combinations of  $cov(y_r(s), y_c(s'))$  for  $r, c = 1, \ldots, q$

# Introduction: covariance modeling for GPs

#### Cross-covariance matrix function

• the cross-covariance matrix function fully characterizes a (zero-mean) multivariate GP (Genton & Kleiber 2015):

$$C(\cdot,\cdot): \Re^d \times \Re^d \to \mathcal{M}$$

where  ${\mathcal M}$  is the space of all positive semidefinite matrices of size  $q \times q$ 

• via C we model all combinations of  $cov(y_r(s), y_c(s'))$  for  $r, c = 1, \ldots, q$ 

#### Desired features

- parsimony for large q
- computational tractability via exploitable structure of sample covariance
- easy-to-interpret parameters

# Linear model of coregionalization / spatial factor model (LMC)

- introduce a matrix A of dimension  $q \times k$  with elements  $a_{rc}, r = 1, \ldots, q; c = 1, \ldots, k$
- introduce k correlation functions  $\rho_j(\cdot, \cdot)$
- LMC models all covariances as linear combinations:

$$cov\{y_r(s), y_c(s')\} = \sum_{j=1}^k a_{rj} a_{jc} \rho_j(s, s')$$

ullet suppose S is the set of observed locations. the sample covariance for the nq imes 1 vector is

$$\operatorname{cov}\{\boldsymbol{y}\} = (\boldsymbol{A} \otimes \boldsymbol{I}_n)\{\oplus \boldsymbol{R}_j\}(\boldsymbol{A}^{\top} \otimes \boldsymbol{I}_n)$$
  $\boldsymbol{R}_j = \rho_j(S, S)$ 

- parsimonious for large q
- computationally tractable via exploitable structure of sample covariance
- easy-to-interpret parameters???

# LMC pros

## LMC is the most popular model for multivariate spatial data:

- extend for some form of nonstationarity (Gelfand et al. 2004)
- spatially-varying regression coefficients, typically via separability assumptions (Gelfand et al. 2003 and Reich et al. 2010)
- space-time data (Berrocal et al. 2010, De laco et al. 2019)
- used for latent process models for non-Gaussian data (Peruzzi & Dunson 2024)
- dimension reduction tool if q is large (Taylor-Rodriguez et al. 2019, Zhang & Banerjee 2022)
- popular in many fields
  (see, e.g., Teh et al. 2005, Finley et al. 2008, Álvarez & Lawrence 2011, Fricker et al. 2013, Moreno-Muñoz et al. 2018, Liu et al. 2022, Townes & Engelhardt 2023)
- Software packages typically use LMCs (Pebesma 2004, Finley et al. 2015, Tikhonov et al. 2020, Finazzi & Fassò 2014, Krainski et al. 2019, Peruzzi 2022)

## LMC cons

### LMC has a few important drawbacks:

- cannot model outcomes with different smoothness
- parameters of  $\rho_j(\cdot)$  are not directly interpretable
- specifying priors is difficult
- ullet cross covariances  $C_{rc}(\cdot), r 
  eq c$  are "as important as" marginal covariances  $C_{rr}(\cdot)$
- ullet difficult to introduce nugget effects in the k=q case
- poorly understood infill asymptotics
- lack of easy pipeline for introducing outcome-specific features

## LMC alternatives

#### Multivariate Matérn (Gneiting 2010):

- each  $C_{rc}(\cdot), r \neq c$  and  $C_{rr}(\cdot)$  is Matérn
- validity conditions restrict parameter space (Apanasovich & Genton 2012, Emery et all 2022)
- need more flexible extensions? validity conditions become a huge burden
- lack of structure in sample covariance matrices
- ullet most useful for the small q regime

#### Latent dimensions (Apanasovich & Genton 2010):

- elegant construction
- lack of structure in sample covariance matrices
- ullet most useful for the small q regime

#### Convolution methods (Gaspari & Cohn 1999, Majumdar & Gelfand 2007):

- computationally prohibitive
- ullet most useful for the small q regime

# What covariance model for this simulated example?

- 4 spatially indexed variables with different degrees of spatial cross-correlation
- each variable has specific features
- simulated at a very large number of spatial locations



# Sampling spatial data

#### Univariate case:

- ullet choose sampling locations S
- ullet sample  $oldsymbol{u} \sim N(oldsymbol{0}, oldsymbol{I}_n)$
- ullet compute  $oldsymbol{L}= ext{chol}\{oldsymbol{R}\}$  where  $oldsymbol{R}=
  ho(S,S)$
- ullet finally,  $oldsymbol{y}=\sigma oldsymbol{L}oldsymbol{u}$

#### LMC:

- ullet choose sampling locations S
- ullet sample  $oldsymbol{u}_j \sim N(\mathbf{0}, oldsymbol{I}_n), j=1,\ldots,k$
- ullet compute  $oldsymbol{L}_j= ext{chol}\{oldsymbol{R}_j\}$  where  $oldsymbol{R}_j=
  ho_j(S,S)$
- ullet compute  $oldsymbol{v}_j = oldsymbol{L}_j oldsymbol{u}_j$  and stack into matrix  $oldsymbol{V}$
- ullet finally,  $oldsymbol{Y} = oldsymbol{V} oldsymbol{A}^ op$  where  $oldsymbol{A}$  is the factor loadings matrix

# Sampling spatial data

#### Univariate case:

- ullet choose sampling locations S
- ullet sample  $oldsymbol{u} \sim N(oldsymbol{0}, oldsymbol{I}_n)$
- ullet compute  $oldsymbol{L}= ext{chol}\{oldsymbol{R}\}$  where  $oldsymbol{R}=
  ho(S,S)$
- ullet finally,  $oldsymbol{y} = \sigma oldsymbol{L} oldsymbol{u}$

generate iid data introduce spatial correlation

#### LMC:

- ullet choose sampling locations S
- sample  $\boldsymbol{u}_j \sim N(\boldsymbol{0}, \boldsymbol{I}_n), j=1,\ldots,k$
- ullet compute  $oldsymbol{L}_j = \operatorname{chol}\{oldsymbol{R}_j\}$  where  $oldsymbol{R}_j = 
  ho_j(S,S)$
- ullet compute  $oldsymbol{v}_j = oldsymbol{L}_j oldsymbol{u}_j$  and stack into matrix  $oldsymbol{V}$
- ullet finally,  $oldsymbol{Y} = oldsymbol{V} oldsymbol{A}^ op$  where  $oldsymbol{A}$  is the factor loadings matrix

generate iid data

introduce spatial correlation

introduce cross-correlation

# Sampling the example data



- ullet choose sampling locations S
- ullet sample  $oldsymbol{u}_j \sim N(\mathbf{0}, oldsymbol{I}_n), j=1,\ldots,k$  and stack into  $oldsymbol{U}$
- ullet compute  $oldsymbol{V} = oldsymbol{U} oldsymbol{A}^ op$
- ullet compute  $oldsymbol{L}_j= ext{chol}\{oldsymbol{R}_j\}$  where  $oldsymbol{R}_j=
  ho_j(S,S)$
- ullet finally,  $oldsymbol{y}_j = oldsymbol{L}_j oldsymbol{v}_j$  (by column) and stack into  $oldsymbol{Y}$

# Sampling the example data



- ullet choose sampling locations S
- ullet sample  $oldsymbol{u}_j \sim N(\mathbf{0}, oldsymbol{I}_n), j=1,\ldots,k$  and stack into  $oldsymbol{U}$
- ullet compute  $oldsymbol{V} = oldsymbol{U} oldsymbol{A}^ op$
- ullet compute  $oldsymbol{L}_j= ext{chol}\{oldsymbol{R}_j\}$  where  $oldsymbol{R}_j=
  ho_j(S,S)$
- ullet finally,  $oldsymbol{y}_j = oldsymbol{L}_j oldsymbol{v}_j$  (by column) and stack into  $oldsymbol{Y}$

generate iid data introduce cross-correlation

introduce spatial correlation

## How is this different from a LMC?

## We are inverting the order of operations:

first, cross-variable dependence. second, spatial dependence

- choose sampling locations S
- ullet sample  $m{u}_i \sim N(\mathbf{0}, m{I}_n), j=1,\ldots,k$  and stack into  $m{U}$  ullet sample  $m{u}_i \sim N(\mathbf{0}, m{I}_n), j=1,\ldots,k$
- ullet compute  $oldsymbol{V} = oldsymbol{U} oldsymbol{A}^ op$
- ullet compute  $oldsymbol{L}_j = \operatorname{chol}\{oldsymbol{R}_i\}$  where  $oldsymbol{R}_i = 
  ho_i(S,S)$
- ullet finally,  $oldsymbol{y}_j = oldsymbol{L}_j oldsymbol{v}_j$  (by column) and stack into  $oldsymbol{Y}$

#### LMC:

- ullet choose sampling locations S
- ullet compute  $oldsymbol{L}_i = \operatorname{chol}\{oldsymbol{R}_i\}$  where  $oldsymbol{R}_i = 
  ho_i(S,S)$
- ullet compute  $oldsymbol{v}_j = oldsymbol{L}_j oldsymbol{u}_j$  and stack into matrix  $oldsymbol{V}$
- ullet finally,  $oldsymbol{Y} = oldsymbol{V} oldsymbol{A}^ op$  where  $oldsymbol{A}$  is the factor loadings matrix

## How is this different from a LMC?

## We are inverting the order of operations:

first, cross-variable dependence. second, spatial dependence

#### **Inside-out** construction:

- choose sampling locations S
- sample  $u_j \sim N(\mathbf{0}, I_n), j=1,\ldots,k$  and stack into U sample  $u_j \sim N(\mathbf{0}, I_n), j=1,\ldots,k$
- ullet compute  $oldsymbol{V} = oldsymbol{U} oldsymbol{A}^ op$
- compute  $\boldsymbol{L}_{i} = \text{chol}\{\boldsymbol{R}_{i}\}$  where  $\boldsymbol{R}_{i} = \rho_{i}(S,S)$
- ullet finally,  $oldsymbol{y}_j = oldsymbol{L}_j oldsymbol{v}_j$  (by column) and stack into  $oldsymbol{Y}$

#### LMC:

- ullet choose sampling locations S
- ullet compute  $oldsymbol{L}_i = \operatorname{chol}\{oldsymbol{R}_i\}$  where  $oldsymbol{R}_i = 
  ho_i(S,S)$
- ullet compute  $oldsymbol{v}_j = oldsymbol{L}_j oldsymbol{u}_j$  and stack into matrix  $oldsymbol{V}$
- ullet finally,  $oldsymbol{Y} = oldsymbol{V} oldsymbol{A}^ op$  where  $oldsymbol{A}$  is the factor loadings matrix

$$oldsymbol{y} = ext{vec}\{oldsymbol{Y}\}$$

$$\operatorname{cov}\{oldsymbol{y}\} = \{\oplus oldsymbol{L}_j\}(oldsymbol{\Sigma} \otimes oldsymbol{I}_n)\{\oplus oldsymbol{L}_j^{ op}\}$$









$$\boldsymbol{\Sigma} = \boldsymbol{A}\boldsymbol{A}^\top$$

$$\operatorname{cov}\{oldsymbol{y}\} = (oldsymbol{A} \otimes oldsymbol{I}_n)\{\oplus oldsymbol{R}_j\}(oldsymbol{A}^ op \otimes oldsymbol{I}_n)$$









$$oldsymbol{R}_j = oldsymbol{L}_j oldsymbol{L}_j^ op$$



## ...but can this lead to a valid cross-covariance matrix function?

#### YES!

Inside-Out Cross-covariance (IOX)

## Ingredients:

- q valid correlation functions  $\rho_j(\cdot, \cdot)$
- ullet Symmetric positive semidefinite
- ullet a set of "reference" locations S

no additional constraints on parameter space

For any pair of locations:

$$cov\{y_i(s), y_j(s')\} = C_{ij}(s, s') = \sigma_{ij} \left[ \boldsymbol{h}_i(s) \boldsymbol{L}_i \boldsymbol{L}_j^{\top} \boldsymbol{h}_j(s') + \varepsilon_{ij}(s, s') \right]$$

where:

$$h_i(s) = \rho_i(s, S)\rho_i(S, S)^{-1}$$
  $r_i(s, s') = \rho_i(s, s') - h_i(s)\rho_s(S, s')$   $\varepsilon_{ij}(s, s') = \mathbb{1}_{\{s=s'\}}\sqrt{r_i(s, s)r_j(s, s)}$ 

# Inside-Out Cross-covariance: key properties

$$C_{ii}(s,s') = \begin{cases} \sigma_{ii}\rho_i(s,s') & \text{if } s \in S \text{ or } s' \in S \text{ or } s = s', \\ \sigma_{ii}\rho_i(s,S)\rho_i(S)^{-1}\rho_i(S,s') & \text{if } s,s' \in S^c \text{ and } s \neq s'. \end{cases}$$

- marginal covariance only depends on  $\rho_i(\cdot)$
- ullet like a "predictive process" (Banerjee et al. 2009) with knots S when both s and s are not in S
- easy to interpret, easy to assign priors
- cross-covariances are not parametrized directly and  $C_{ij}(s,s') \leq \sigma_{ij}$
- ullet non-stationarity induced by dependence on S
- $\bullet$  choice of S? default to observed locations
- outcome-specific features introduced via  $\rho_i(\cdot)$  (eg. nugget effects)
- GP with IOX lead to efficient Gibbs samplers for response models and latent models
- new ways to define spatial factor models

## **GPs with IOX**

- suppose we use IOX as the covariance model for a multivariate GP
- ullet in GP-IOX,  $oldsymbol{y}(s)$  and  $oldsymbol{y}(s')$  are conditionally independent given  $oldsymbol{y}$  (i.e. the data at S)
- ullet let Y be the matrix of observed variables (one per column) and V the matrix obtained by "spatial whitening" of each column of Y, i.e.  $m{v}_j = m{L}_i^{-1} m{y}_j$
- likelihood and full conditional densities have convenient structure:

$$\log p(\boldsymbol{y} \mid \boldsymbol{\Sigma}) = \operatorname{const} - \frac{n}{2} \log \det(\boldsymbol{\Sigma}) + \sum_{ij} \log \boldsymbol{L}_i^{-1}[j,j] - \frac{1}{2} \operatorname{Tr} \left( \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{V}^\top \right)$$

$$\log p(\boldsymbol{y}_j \mid \boldsymbol{y}_{-j}) = \operatorname{const} + \frac{1}{2} \log \det\{Q_{jj} \rho_j(\mathcal{S})^{-1}\} - \frac{1}{2Q_{jj}} \boldsymbol{Q}_{j\cdot} \boldsymbol{V}^\top \boldsymbol{V} \boldsymbol{Q}_{j\cdot}^\top$$
where  $\boldsymbol{Q} = \boldsymbol{\Sigma}^{-1}$ 

- ullet if n is large, we can use a Vecchia-style approximation to sparsify  $oldsymbol{L}_i^{-1}$
- ullet the entirety of GP-IOX depends on  $oldsymbol{L}_i^{-1}$ , we never work with  $oldsymbol{L}_i$  in practice
- ullet factor models target  $\Sigma$  directly: seamlessly plug-in any (non-spatial) factor model (unlike LMC!)

# **GPs with IOX: models and algorithms**

#### Response model

$$Y(\cdot) \sim \text{GP-IOX}$$

- dimension reduction via clustering of  $\rho_j(\cdot)$
- update covariance parameters  $m{ heta}$  as a block or  $m{ heta}_j \mid m{ heta}_{-j}$  Metropolis-within-Gibbs
- ullet conditionally conjugate updates for  $\Sigma$  available

# Latent model $\mathbf{V} = \mathbf{V} \mathbf{P}$

$$oldsymbol{Y} = oldsymbol{X} oldsymbol{B} + oldsymbol{W} + oldsymbol{E}$$
 $oldsymbol{W}(\cdot) \sim ext{GP-IOX}$ 

- ullet dimension reduction via low-rank assumption on  $\Sigma$
- ullet block sampler for  $oldsymbol{W}$  may be slow if n and/or q large
- ullet better: block-sample  $oldsymbol{W}_j \mid oldsymbol{W}_{-j}$  or single-site sampler

# Application 1: simulated data - setup

- each dataset n = 2,500 locations, q = 3 outcomes, dimension nq = 7,500
- 60 datasets generated with IOX with Matérn components
- 60 datasets generated with multivariate Matérn

#### targets:

- estimation of  $corr\{Y(s), Y(s)\}$  (correlation at zero spatial distance)
- estimation of smoothness, spatial decay, and nuggets for each component

# Application 1: simulated data - results

- each dataset n = 2,500 locations, q = 3 outcomes, dimension nq = 7,500
- 60 datasets generated with IOX with Matérn components
- 60 datasets generated with multivariate Matérn

## targets:

- estimation of  $corr\{Y(s), Y(s)\}$  (correlation at zero spatial distance)
- estimation of smoothness, spatial decay, and nuggets for each component

#### results:

GP-IOX models outperform others in all tasks

| IOX data                             | $ ho_{21}$ | $ ho_{31}$ | $ ho_{32}$ | $ u_1$ | $ u_2$ | $\nu_3$ | $\phi_1$ | $\phi_2$ | $\phi_3$ | $	au_1^2$ | $	au_2^2$ | $	au_3^2$ | Time |
|--------------------------------------|------------|------------|------------|--------|--------|---------|----------|----------|----------|-----------|-----------|-----------|------|
| IOX Response                         | 0.0045     | 0.0208     | 0.0188     | 0.1100 | 0.0335 | 0.0474  | 2.89     | 2.01     | 2.28     | 0.0089    | 0.0007    | 0.0005    | 12   |
| IOX Latent Sequential single-site    | 0.0065     | 0.0198     | 0.0187     | 0.0803 | 0.0293 | 0.0836  | 3.25     | 2.11     | 3.90     | 0.0013    | 0.0004    | 0.0005    | 22   |
| IOX Latent Sequential single-outcome | 0.0058     | 0.0197     | 0.0184     | 0.0763 | 0.0285 | 0.0842  | 3.36     | 2.13     | 3.87     | 0.0006    | 0.0005    | 0.0005    | 41   |
| Mult. Matérn                         | 0.0098     | 0.0246     | 0.0226     | 0.1170 | 0.0620 | 0.0616  | 7.53     | 3.31     | 2.32     | 0.0209    | 0.0026    | 0.0006    | 3    |
| LMC                                  | 0.0936     | 0.3510     | 0.4020     |        |        |         |          |          |          | 0.0252    | 0.0025    | 0.0020    | 13   |

# Application 1: simulated data - results

- each dataset n = 2,500 locations, q = 3 outcomes, dimension nq = 7,500
- 60 datasets generated with IOX with Matérn components
- 60 datasets generated with multivariate Matérn

## targets:

- estimation of  $corr\{Y(s), Y(s)\}$  (correlation at zero spatial distance)
- estimation of smoothness, spatial decay, and nuggets for each component

#### results:

• GP-IOX models (mispecified) competitive with the (well specified) multivariate Matérn

| Mult. Matérn data                    | $ ho_{21}$ | $ ho_{31}$ | $ ho_{32}$ | $ u_1$ | $ u_2$ | $ u_3$ | $\phi_1$ | $\phi_2$ | $\phi_3$ | $	au_1^2$ | $	au_2^2$ | $	au_3^2$ | Time |
|--------------------------------------|------------|------------|------------|--------|--------|--------|----------|----------|----------|-----------|-----------|-----------|------|
| IOX Response                         | 0.0228     | 0.0533     | 0.0506     | 0.1030 | 0.0465 | 0.0539 | 2.84     | 2.23     | 2.21     | 0.0219    | 0.0016    | 0.0009    | 11   |
| IOX Latent Sequential single-site    | 0.0100     | 0.0431     | 0.0440     | 0.0351 | 0.0462 | 0.0998 | 3.92     | 2.34     | 3.45     | 0.0056    | 0.0002    | 0.0004    | 21   |
| IOX Latent Sequential single-outcome | 0.0129     | 0.0452     | 0.0454     | 0.0258 | 0.0551 | 0.1050 | 4.29     | 2.53     | 3.43     | 0.0037    | 0.0001    | 0.0004    | 40   |
| Mult. Matérn                         | 0.0074     | 0.0180     | 0.0234     | 0.0527 | 0.0436 | 0.0473 | 4.03     | 2.92     | 2.10     | 0.0109    | 0.0013    | 0.0004    | 3    |
| LMC                                  | 0.0643     | 0.3450     | 0.3920     |        |        |        |          |          |          | 0.0269    | 0.0032    | 0.0024    | 12   |

# Application 2: simulated data - setup

- each dataset n = 2,500 locations, q = 24 outcomes, dimension nq = 60,000
- 20 datasets generated with IOX
- 20 datasets generated with LMC (k=8)
- ullet target estimating  $\mathrm{corr}\{oldsymbol{Y}(s),oldsymbol{Y}(s)\}$  (correlation at zero spatial distance)
- target predictions at 400 out-of-sample locations



# Application 2: simulated data - results

IOX data LMC data

| Method                    | $ ho_{ij}$ | $ u_j$ | Predictions (full) | Predictions (partial) | Time | $ ho_{ij}$ | Predictions (full) | Predictions (partial) | Time |
|---------------------------|------------|--------|--------------------|-----------------------|------|------------|--------------------|-----------------------|------|
| IOX Full                  | 0.0167     | 0.0692 | 0.482              | 0.123                 | 40   | 0.162      | 1.22               | 1.15                  | 66   |
| IOX Grid                  | 0.0250     | 0.169  | 0.490              | 0.140                 | 4.1  | 0.234      | 1.45               | 1.46                  | 11   |
| IOX Cluster               | 0.0191     | 0.250  | 0.493              | 0.138                 | 12   | 0.163      | 1.23               | 1.16                  | 20   |
| LMC                       | 0.270      |        | 0.685              | 0.631                 | 15   | 0.312      | 1.15               | 1.08                  | 34   |
| NNGP<br>Indep. univariate | 0.106      | 0.124  | 0.483              |                       | 76   | 0.123      | 1.21               |                       | 55   |
| Non-spatial model         | 0.0610     |        |                    | 0.386                 | 3    | 0.0921     |                    | 1.27                  | 3    |

- GP-IOX outperforms all others in the 20 IOX datasets
- GP-LMC does not outperform a non-spatial model in the 20 LMC datasets

# Application 2: colorectal cancer data - setup

- 18 protein markers on tissue biopsy slide from 1 patient
- detection intensity varies in space
- n = 2.873 spatial locations. nq = 51.714
- apply severeal GP-IOX models, LMC, and a non-spatial model



# Application 2: colorectal cancer data - results

Intensity maps reflect varying ranges, smoothness, variance



# Application 2: colorectal cancer data - results

• Average percentage error in out-of-sample prediction of 2 variables given all others at the same location

| Method            | APE    | Time(s) |  |  |
|-------------------|--------|---------|--|--|
| IOX Full          | 0.0639 | 47      |  |  |
| IOX Cluster       | 0.0638 | 22      |  |  |
| LMC $k = 6$       | 0.0704 | 37      |  |  |
| LMC $k = 8$       | 0.0679 | 52      |  |  |
| Non-spatial model | 0.0687 | 1       |  |  |

- IOX outperforms others while maintaining good scalability profile
- LMC must increase number of factors to outperform a simple non-spatial model

## **Conclusions**

- IOX offers a new way to model multivariate spatial data
- structured covariance and precision matrices yield scalable algorithms
- flexibility in modeling outcome-specific features
- interpretable and direct parameter inference for marginal covariances
- competitive with multivariate Matérn in small dimensional settings, but can extend to higher-dimensional data
- competitive with LMC while being more flexible and interpretable
- software for fitting response & latent GP-IOX via MCMC at github.com/mkln/spiox
- for more info and references: https://arxiv.org/abs/2412.12407