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Introduction: spatial multivariate data

Spatial multivariate data

® at each location s we observe a random vector of dimension g
® spatial dependence and cross-variable dependence

Examples

® community ecology
® remote sensing

® climate data

® multiplexed imaging data of tissue biopsy, “omics” data



Introduction: spatial multivariate data

Example: satellite imaging

46

Latitude
&

=

-112

=111

Longitude

110

-109

46

45

Latitude

44

43

112 -111 -110 -109
Longitude

Temperature

270
280



Introduction: spatial multivariate data

Example: microimmunofluorescence of tissue biopsies

PDAC image 38-1 PDAC image 532-3-2 PDAC image 303-2
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Introduction: example

Example: simulated data
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Introduction: example

Example: simulated data but more complicated

QOutcome 1 QOutcome 2 QOutcome 3 Outcome 4




Introduction: covariance modeling for GPs

Spatial multivariate data
® at each location s we observe a random vector of dimension g

y1(s)
Y(s) = '

Yq(8)_
® Gaussian assumption on the process {Y (s) : s € D} leads to multivariate Gaussian Process (GP) model
® the cross-covariance matrix function fully characterizes a (zero-mean) multivariate GP (Genton & Kleiber 2015);

C(-,-): R x RY - M
where M is the space of all positive semidefinite matrices of size ¢ X ¢
® this is our covariance model: we are modeling cov(Y (s),Y (s)) = C(s, s")
® via C we model all combinations of cov(y,(s), y.(s))forr,c=1,...,q



Introduction: covariance modeling for GPs

Cross-covariance matrix function
® the cross-covariance matrix function fully characterizes a (zero-mean) multivariate GP (Genton & Kleiber 2015);

C(-,): REx R - M
where M is the space of all positive semidefinite matrices of size ¢ X ¢
® via C we model all combinations of cov(y,(s),y.(s"))forr,c =1,...,q

Desired features

® parsimony for large g

® computational tractability via exploitable structure of sample covariance
® easy-to-interpret parameters



Linear model of coregionalization / spatial factor model (LMC)

® introduce a matrix A of dimension ¢ X k with elements ¢, 7 =1,...,q;c=1,...,k
® introduce k correlation functions p; (-, -)
® | MC models all covariances as linear combinations:

k
cov{y(s),ye(s)} = D arjajepi(s,s')
j=1
® suppose S is the set of observed locations. the sample covariance for the ng X 1 vector is

coviy} = (A ® In){EBRj}(AT ® I,) R; =p;(5,5)

S ™
- - NS
S
® parsimonious for large g

® computationally tractable via exploitable structure of sample covariance
® easy-to-interpret parameters???




LMC pros

LMC is the most popular model for multivariate spatial data:

® cxtend for some form of nonstationarity (Gelfand et al. 2004)

spatially-varying regression coefficients, typically via separability assumptions (Gelfand et al. 2003 and Reich et al. 2010)
space-time data (Berrocal et al. 2010, De laco et al. 2019)

used for latent process models for non-Gaussian data (Peruzzi & Dunson 2024)

dimension reduction tool if q is large (Taylor-Rodriguez et al. 2019, Zhang & Banerjee 2022)

popular in many fields
(see, e.qg., Teh et al. 2005, Finley et al. 2008, Alvarez & Lawrence 2011, Fricker et al. 2013, Moreno-Mufioz et al. 2018, Liu et al. 2022, Townes & Engelhardt 2023)

® Software packages typically use LMCs
(Pebesma 2004, Finley et al. 2015, Tikhonov et al. 2020, Finazzi & Fasso 2014, Krainski et al. 2019, Peruzzi 2022)



LMC cons

LMC has a few important drawbacks:

cannot model outcomes with different smoothness

parameters of O; (*) are not directly interpretable

specifying priors is difficult

cross covariances C,..(+), r % ¢ are “as important as” marginal covariances C;..(-)
difficult to introduce nugget effects in the £ = q case

poorly understood infill asymptotics

lack of easy pipeline for introducing outcome-specific features



LMC alternatives

Multivariate Matérn (Gneiting 2010):

® cachC,.(:),r # cand C}..(+) is Matérn

® validity conditions restrict parameter space (Apanasovich & Genton 2012, Emery et all 2022)
need more flexible extensions? validity conditions become a huge burden

lack of structure in sample covariance matrices

most useful for the small g regime

Latent dimensions (Apanasovich & Genton 2010).
® clegant construction

® |ack of structure in sample covariance matrices
® most useful for the small g regime

Convolution methods (Gaspari & Cohn 1999, Majumdar & Gelfand 2007).
® computationally prohibitive
® most useful for the small g regime



What covariance model for this simulated example?

® 4 spatially indexed variables with different degrees of spatial cross-correlation
® cach variable has specific features
® simulated at a very large number of spatial locations

Outcome 1 Outcome 2 Outcome 3 Outcome 4
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Sampling spatial data

Univariate case:

® choose sampling locations S

® sampleu ~ N(0,1,)

® compute L = chol{R} where R = p(S, 5)
® finally, y = oLu

LMC:

® choose sampling locations S

® sample U; ~ N(O,In),j — 1,...,]{7

compute L; = chol{R,} where R; = p; (S5, S)
compute V; = L u; and stack into matrix V/

finally, Y = V A ' where A is the factor loadings matrix



Sampling spatial data

Univariate case:

® choose sampling locations S

® sampleu ~ N(0,1,) generate iid data

® compute L = chol{R} where R = p(S, 5) introduce spatial correlation
® finally, y = oLu

LMC:

® choose sampling locations S

® sampleu; ~ N(0,1,),j=1,...,k generate iid data
® compute L; = chol{R,} where R; = p;(S5,S)

introduce spatial correlation

compute V; = L u; and stack into matrix V/
® finally, Y = V A ' where A is the factor loadings matrix iIntroduce cross-correlation



Sampling the example data

Outcome 1 Outcome 2 Outcome 3 Outcome 4
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choose sampling locations S

sample uj ~ N(0,1I,),j =1,...,k and stack into U
compute V = UA'

compute L; = chol{R;} where R; = p;(5,S)
finally, Y ; — L ;v; (by column) and stack into Y’

1.0



Sampling the example data

Outcome 1 Outcome 2 Outcome 3 Outcome 4
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marginally stationary = unequal smoothness nonstationary via warp  spatially-varying sill

choose sampling locations S

sample u; ~ N(0,1,),7 =1,...,k and stack into U generate iid data
computeV =UA" introduce cross-correlation
compute L; = chol{R;} where R; = p;(5,S)

finally, ¥,; = L ;v (by column) and stack into Y iIntroduce spatial correlation



How is this different from a LMC?

We are inverting the order of operations:
first, cross-variable dependence. second, spatial dependence

LMC:
® choose sampling locations S ® choose sampling locations S
® sample U; ~ N(OaI’n)yj = 1,...,kand stackintoU e sample w; ~ N(O, In),] =1,...,k
® compute V. =UA" ® compute L; = chol{R;} where R; = p;(5,S)
® compute L; = chol{R;} where R; = p;(5,S) ® compute V; = L;u; and stack into matrix V
® finally, ¥, = L ;v (by column) and stack into Y e finally, Y = V A' where A is the factor loadings matrix



How is this different from a LMC?

We are inverting the order of operations:
first, cross-variable dependence. second, spatial dependence

Inside-out construction: LMC:

® choose sampling locations S ® choose sampling locations S

® sampleu; ~ N(0,1,),j=1,...,kandstackintoU e sampleu; ~ N(0,1,),j=1,...,k

e compute V. =UA" ® compute L; = chol{R;} where R; = p;(5,S)

® compute L; = chol{R;} where R; = p;(5,S) ® compute V; = L;u; and stack into matrix V

e finally, ¥; = L;v; (by column) and stack into Y’ e finally, Y = V A' where A is the factor loadings matrix

y =vec{Y}

coviy} ={BL; } (X ® In){EBLjT} cov{yl = (A I,){oR;}(A' ®1I,)

N NN R R
h N N

X =AA' R;=L;L;




...but can this lead to a valid cross-covariance matrix function?



...but can this lead to a valid cross-covariance matrix function?

YES!

Inside-Out Cross-covariance (I0OX)

Ingredients:
® ¢ valid correlation functions p; (-, -)

® >’ symmetric positive semidefinite no additional constraints on parameter space
® 3 set of “reference” locations S

For any pair of locations:

cov{yi(s),y;(s")} = Cij(s,8") = 0ij [hi(s)LiLj hj(s") + €ij(s, ")

where:

hi(s) = pi(s,9)pi(S,9)™Y  ri(s,s) = pi(s,s") — hi(s)ps(S,s")  Eij(s, s') = ]1{3:3'}\/7“7;(57 s)1;(8,5)



Inside-Out Cross-covariance: key properties

, oiipi(S,s) ifseSors eSors=5¢,
07;7;(8, 5 ) — —1 / - / /
giipi(8,9)pi (S)” " p;(S,s") if s, s’ € S¢and s # .
® marginal covariance only depends on pi(+)
® |ike a “predictive process” (Banerjee et al. 2009) With knots S when both s and s’ are not in S
® easy to interpret, easy to assign priors
® cross-covariances are not parametrized directly and C; (s, s') < oy;
® non-stationarity induced by dependence on S
® choice of S? default to observed locations
® outcome-specific features introduced via p;(+) (eg. nugget effects)
® GP with IOX lead to efficient Gibbs samplers for response models and latent models
® new ways to define spatial factor models



GPs with 10X

® suppose we use |IOX as the covariance model for a multivariate GP

® in GP-10X, y(s)and y(s') are conditionally independent given ¥ (i.e. the data at S)

® |et Y be the matrix of observed variables (one per column) and
V the matrix obtained by “spatial whitening” of each column of Y, i.e. v; = Lj_lyj

® |ikelihood and full conditional densities have convenient structure:

logp(y | 2) = const — glog det(X) + Zlog L:'[j,4] — %Tr (VE_1VT>
i |

20

if n is large, we can use a Vecchia-style approximation to sparsify L, !

® the entirety of GP-IOX depends on L, 1, we never work with L; in practice

® factor models target 3. directly: seamlessly plug-in any (non-spatial) factor model (unlike LMC!)

1 _
logp(y, | y_;) = const + : log det{Q,:p;(S)'} Qj,VTVQjT,

—1
where Q=X



GPs with IOX: models and algorithms

Response model Latent model
Y (:) ~ GP-I0X Y= XB+W+FE
® dimension reduction via clustering of p; (-) W () ~ GP-IOX
® update covariance parameters 0 as a block or ® dimension reduction via low-rank assumption on X

0; | 0 Metropolis-within-Gibbs

® block sampler for W may be slow if n and/or g large
® conditionally conjugate updates for 3. available

® better: block-sample W, | W _ or single-site sampler



Application 1: simulated data - setup

® cach dataset n = 2,500 locations, g = 3 outcomes, dimension nqg = 7,500
® 60 datasets generated with 10X with Matérn components
® 60 datasets generated with multivariate Mateéern

targets:
® estimation of corr{Y (s), Y (s)} (correlation at zero spatial distance)
® ecstimation of smoothness, spatial decay, and nuggets for each component



Application 1: simulated data - results

® cach dataset n = 2,500 locations, g = 3 outcomes, dimension nqg = 7,500

® 60 datasets generated with IOX with Matérn components

® 60 datasets generated with multivariate Mateéern

targets:

® estimation of corr{Y (s), Y (s)} (correlation at zero spatial distance)
® ecstimation of smoothness, spatial decay, and nuggets for each component

results:

® GP-I0X models outperform others in all tasks

IOX data 021 031 032 2 Vo V3 o3 b2 b3 7 (7 72 | Time
I0OX Response 0.0045 | 0.0208 | 0.0188 | 0.1100 | 0.0335 | 0.0474 | 2.89 | 2.01 | 2.28 | 0.0089 | 0.0007 | 0.0005 12
10X Latent 0.0065 | 0.0198 | 0.0187 | 0.0803 | 0.0293 | 0.0836 | 3.25 | 2.11 | 3.90 | 0.0013 | 0.0004 | 0.0005 22

Sequential single-site
10X Latent 0.0058 | 0.0197 | 0.0184 | 0.0763 | 0.0285 | 0.0842 | 3.36 | 2.13 | 3.87 | 0.0006 | 0.0005 | 0.0005 41

Sequential single-outcome

Mult. Matérn 0.0098 | 0.0246 | 0.0226 | 0.1170 | 0.0620 | 0.0616 | 7.53 | 3.31 | 2.32 | 0.0209 | 0.0026 | 0.0006 3
LMC 0.0936 | 0.3510 | 0.4020 0.0252 | 0.0025 | 0.0020 13




Application 1: simulated data - results

® cach dataset n = 2,500 locations, g = 3 outcomes, dimension nqg = 7,500

® 60 datasets generated with 10X with Matérn components

® 60 datasets generated with multivariate Matérn

targets:

® estimation of corr{Y (s), Y (s)} (correlation at zero spatial distance)

® ecstimation of smoothness, spatial decay, and nuggets for each component

results:

® GP-10X models (mispecified) competitive with the (well specified) multivariate Matérn

Mult. Matérn data P21 031 039 Uy Vo V3 b1 b2 b3 0 i 72 | Time
TOX Response 0.0228 | 0.0533 | 0.0506 | 0.1030 | 0.0465 | 0.0539 | 2.84 | 2.23 | 2.21 | 0.0219 | 0.0016 | 0.0009 11
10X Latent 0.0100 | 0.0431 | 0.0440 | 0.0351 | 0.0462 | 0.0998 | 3.92 @ 2.34 | 3.45| 0.0056 | 0.0002 | 0.0004 21

Sequential single-site
IOX Latent 0.0129 | 0.0452 | 0.0454 | 0.0258 | 0.0551 | 0.1050 | 4.29 | 2.53 | 3.43 | 0.0037 | 0.0001 | 0.0004 40

Sequential single-outcome
Mult. Matérn 0.0074 | 0.0180 | 0.0234 | 0.0527 | 0.0436 | 0.0473 | 4.03 | 2.92 | 2.10 | 0.0109 | 0.0013 | 0.0004 3
LMC 0.0643 | 0.3450 | 0.3920 0.0269 | 0.0032 | 0.0024 12




Application 2: simulated data - setup

each dataset n = 2,500 locations, g = 24 outcomes, dimension ng = 60,000
20 datasets generated with 10X

20 datasets generated with LMC (k=38)

target estimating corr{Y (s), Y (s)} (correlation at zero spatial distance)
target predictions at 400 out-of-sample locations

Outcome 1 Outcome 2 QOutcome 3

utcome 10




Application 2: simulated data - results

10X data LMC data
NCiE Di; v, Preilfiu{ilt)iﬂns Pr?iif; il:):ms T Dis Prec{lﬁsﬁians Pr?f;f::l?ns I
[0X Full 0.0167 | 0.0692 0.482 0.123 40 0.162 1.22 1.15 66
[0X Grid 0.0250 0.169 0.490 0.140 4.1 0.234 1.45 1.46 11
[OX Cluster 0.0191 0.250 0.493 0.138 12 0.163 1.23 1.16 20
LMC 0.270 0.685 0.631 15 0.312 1.15 1.08 34
IndefNuﬁim 0.106 | 0.124 0.483 76 || 0.123 1.21 55
Non-spatial model | 0.0610 0.386 3 1| 0.0921 1.27 3

® GP-10OX outperforms all others in the 20 IOX datasets
® GP-LMC does not outperform a non-spatial model in the 20 LMC datasets




Application 2: colorectal cancer data - setup

18 protein markers on tissue biopsy slide from 1 patient
detection intensity varies in space

n = 2,873 spatial locations. nqg = 51,714

apply severeal GP-I0OX models, LMC, and a non-spatial model

beta-catenin CD11b
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0.5

0.0




® |ntensity maps reflect varying ranges, smoothness, variance

05 —4




Application 2: colorectal cancer data - results

® Average percentage error in out-of-sample prediction of 2 variables given all others at the same location

Method APE | Time(s)
[OX Full 0.0639 47
[0OX Cluster 0.0638 22
LMC k£ =6 0.0704 37
LMC k£ =38 0.0679 H2
Non-spatial model | 0.0687 |

® |OX outperforms others while maintaining good scalability profile
® | MC must increase number of factors to outperform a simple non-spatial model



Conclusions

® |OX offers a new way to model multivariate spatial data
® structured covariance and precision matrices yield scalable algorithms

flexibility in modeling outcome-specific features

interpretable and direct parameter inference for marginal covariances

competitive with multivariate Matérn in small dimensional settings, but can extend to higher-dimensional data
competitive with LMC while being more flexible and interpretable

software for fitting response & latent GP-IOX via MCMC at github.com/mkln/spiox

for more info and references: https://arxiv.org/abs/2412.12407



