Spatial Statistics - BIOSTAT 696/896
University of Michigan
\sigma^2 \sim Inv.G(a,b) \beta \sim N(m_{\beta}, \sigma^2 V_{\beta}) Y = X \beta + \varepsilon, \text{ where } \varepsilon \sim N(0, \sigma^2 I_n) Equivalently, Y \sim N(X \beta, \sigma^2 I_n).
P(A | B) = \frac{P(A) P(B|A)}{P(B)} Bayesian linear regression: p(\sigma^2, \beta | Y) = \frac{ p(\sigma^2, \beta) p(Y | \sigma^2, \beta) }{p(Y)} \propto p(\sigma^2, \beta) p(Y | \sigma^2, \beta)
V^* = \left(\frac{1}{v} + \frac{1}{\sigma^2} 1_n^T 1_n \right)^{-1} = \left(\frac{1}{v} + \frac{n}{\sigma^2} \right)^{-1}
\mu^* = V^* \left(\frac{m}{v} + \frac{1}{\sigma^2} 1_n^T Y \right) = V^* \left(\frac{m}{v} + \frac{\sum_i y_i}{\sigma^2}\right)
E(Y) = E(a+BX) = a + B\ E(X)
Cov(Y)= Cov(a + BX) = B\ Cov(X)\ B^T
Y \sim MVN(a + B\mu, B\Sigma B^T)
Density of X \sim MVN(\mu, \Sigma) where X \in \Re^n is
p(x; \mu, \Sigma) = |2\pi \Sigma |^{-\frac{1}{2}} \exp\left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
|2\pi \Sigma |^{-\frac{1}{2}} = (2\pi)^{-\frac{n}{2}} | \Sigma |^{-\frac{1}{2}}, |\Sigma|^{-1} = \frac{1}{|\Sigma|}, and |\Sigma| = det\{\Sigma\}
Cholesky decomposition of \Sigma: it is the lower triangular matrix L such that L L^T = \Sigma
\Sigma^{-1} = L^{-T} L^{-1} where L^{-T} = (L^{-1})^T
det(\Sigma) = 2 \prod_{i=1}^n L_{ii}
Therefore, if we have \Sigma, compute L then use it to evaluate density
Log-density most typically used in practice. This is then
\log p(x; \mu, \Sigma) = -\frac{n}{2} \log(2\pi) - \sum_{i=1}^n\log(L_{ii}) - \frac{1}{2}(x-\mu)^T L^{-T} L^{-1} (x-\mu)
P( X(t+1) = j | X(t) = i_t, X(t-1) = i_{t-1}, \dots, X(0) = i_0 ) = P( X(t+1) = j | X(t) = i_t )