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“The only way this planet is going to deal with its Global challenges to
feed people, supply them with medical care, supply them with energy,

electricity, and to make sure they’re not burnt to a crisp because of global
warming is the effective use of data” —- Kenneth Cukier: Big data is

better data (Ted talk)
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Different type of “messy” data

(a) blocked by clouds (b) poor quality

(c) measurement error (d) combine multiple datasets

3/31



4/31

Motivating problem Multivariate Spatial Modeling Scalable BLMC factor model Others

Motivating Data (source)

Vegetation Indices data

Global Terrestrial
Evapotranspiration Product,

Gross Primary Productivity data

Land cover type data

Lu Zhang Lecture at UMich

Multivariate spatial modeling and BLMC Factor model



5/31

Motivating problem Multivariate Spatial Modeling Scalable BLMC factor model Others

Motivating Data (key features)

Large scale spatial data:
N = 1, 020, 000 observed locations

Multiple responses from
different sources: q = 10
responses

Misalignment (missing
observations): Not all responses
are recorded on every observed
location (Heatmap) Has missing
responses on over 65% of observed
locations

Figure: Heat-map of counts of observed
responses, the greener the color, the higher
the value. Grey square: a blocked region
with no responses.
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Motivating Data (illustration)

NDVI (Normalized Difference Vegetation Index) is an index to identify
vegetation amount and measure plant health vitality.
Range:(-1, 1); The higher the VI, the higher amounts of vegetation. Shift
to (0, 2) and transform it by log for better model fitting
Understanding the global distribution of vegetation types as well as their
biophysical and structural properties and spatial variations.

Figure: Colored transformed NDVI and red reflectance images of zone h08v05 western
United States; Same color scale; The warmer the color, the lower the value.
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Motivating Data (illustration)

Red Reflectance Waveband in red (655 nm)

Healthy green plants absorb red light

Unit:Reflectance: ratio of the amount of light leaving a target to the
amount of light striking the target. (transformed by log)

Figure: Colored transformed NDVI and red reflectance of zone h08v05 western United
States; Same color scale; The warmer the color, the lower the value.
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Motivating Data

Other 8 responses: Enhanced Vegetation Index (EVI), Gross Primary
Productivity (GPP), Net Photosynthesis (PSN), blue reflectance,
evapotranspiration (ET), latent heat flux (LE), potential ET (PET),
potential LE (PLE)

Explanatory variables: Land type data, indicator of no vegetation or
urban area based on the 2016 land cover data (+ intercept)

Analysis goals:

Impute the missing responses

Predict in the blocked region

Measure the impact of the land type on different measurements of
greenness
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Multivariate Spatial Regression Model

All Responses: y(s) = (y1(s), . . . , yq(s))
⊤

Explanatory variables: x(s) = (x1(s), . . . , xp(s))
⊤

Multivariate Spatial Regression Model

y(s) = β⊤x(s) + ω(s) + ϵ(s) , s ∈ D (1)

β: p × q regression coefficient matrix D: Study domain

ϵ(s) = (ϵ1(s), . . . , ϵq(s))
⊤: noise ϵ(s)

iid∼ N(0,Σ)

ω(s): latent processes, capture the underlying spatial pattern that cannot
be explained by explanatory variables for all responses.
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Multivariate Spatial Regression Model

ω(s) ∼ GP(0q,C(·, ·)) Gaussian process with cross-covariance function
C(·, ·)

For (s, s′) ∈ D ×D, C(s, s′) is q × q matrix with

{C(s, s′)}ij = cov(ωi (s),ωj(s
′)) 1 ≤ i , j ≤ q .

How ω(s) affect ω(s′); Well-defined if for any spatial locations s1, . . . , sn
and any integer n, {C(si , sj)}ni=1,j=1 is positive definite

Denote ω⊤ = (ω1(s1), . . . , ωq(s1), ω1(s2), . . . ωq(s2), . . . , ω1(sn), . . . ωq(sn))

Σω = {C(si , sj)}ni=1,j=1 the covariance matrix of ω, nq × nq matrix
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Challenges and Motivation

Big-data problems, observed locations in millions
Σω : nq × nq matrix. Calculation needs Cholesky decomposition of this
nq × nq matrix. For q = 1, n = 1, 000, 000, this decomp. in R would
require over 3700 GB RAM, and hundreds of hours for an i7 processor.

Challenging for obtaining Bayesian inference when using iterative method
like MCMC algorithm

Pathological geometry features of the posterior

Studies on scalable spatial modeling focus on single process modeling.
Limited discussions on scalable multivariate spatial data modeling,
especially for data with missing responses

Extend scalable modeling strategies for a single process to Bayesian
multivariate process modeling.
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Multivariate spatial modeling: Separable models

Let ρ be a valid correlation function for a univariate spatial process, Let T be a
q × q positive definite matrix and let

C(s, s′) = ρ(s, s′) · T . (2)

In (2), T ≡ (Tij) is interpreted as the covariance matrix associated with ω(s),
and ρ attenuates association as s and s ′ become farther apart.

Σω = H ⊗ T ,

where (H)ij = ρ(si , sj) and ⊗ denotes the Kronecker product. Σω is evidently
positive definite since H and T are.

Lu Zhang Lecture at UMich

Multivariate spatial modeling and BLMC Factor model



13/31

Motivating problem Multivariate Spatial Modeling Scalable BLMC factor model Others

Multivariate spatial modeling: Separable models

pros:
Convenient to work with

|Σω | = |H|q |T |n; ΣT
ω = H−1 ⊗ T−1

Accelerate posterior sampling through Gibbs sampler under certain prior
settings

cons:
C(s, s′) is symmetric , i.e., cov(ωl (si ), ωl′ (si′ ))) = cov(ωl′ (si ), ωl (si′ ))) for
all i , i ′, l , l ′.
If ρ is stationary, the generalized correlation (coherence in time series
literature)

cov(ωl (s), ωl′ (s + h))√
cov(ωl (s), ωl (s + h))cov(ωl′ (s), ωl′ (s + h))

=
Tll′√
TllTll′

is regardless of s and h
ρ is isotropic and strictly decreasing, then the spatial range is identical for
each component of ω(s)
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Kronecker Product

Definition

The Kronecker product, denoted by ⊗, is an operation on two matrices of
arbitrary size resulting in a block matrix.

If A is an m × n matrix and B is a p × q matrix, then the Kronecker
product A⊗ B is an mp × nq matrix.

Operationally, A⊗ B is obtained by multiplying each element aij of A by
the matrix B.

Example

Given A =

(
a b
c d

)
and B =

(
e f
g h

)
, the Kronecker product A⊗ B: is


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh


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Multivariate spatial modeling: Coregionalization models

Linear Model of Coregionalization (LMC)

ω(s) = Aw(s) ,

where w(s)⊤ = (w1(s), . . . ,wq(s)), A is a q × q matrix.

Let the wj(s) process have mean µj , variance 1, and correlation function
ρj(h). Then E(ω(s)) = Aµ where µ⊤ = (µ1, . . . , µq) and

Σω(s),ω(s′) = C(s, s′) =

q∑
k=1

ρk(s, s
′)Tj ,

where Tj = aja
⊤
j with aj the jth column of A

Define T =
∑

j Tj . The one-to-one relationship between T and lower
triangular A is standard.
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Coregionalization models

Each ωj(s) has its own range.

Equivalence of likelihoods.
In the context of ω(s) = Aw(s) where the wj (s) are mean zero Gaussian
processes, by taking A to be lower triangular the equivalence and associated
reparametrization are easy to see

p(ω1(s))p(ω2(s) | ω1(s)) · · · p(ωq(s) | ω1(s), . . . ,ωq−1(s))

Advantages to working with the conditional form of the model are certainly
computational and possibly mechanistic or interpretive.

Other extensions, the column number of A need not be equal to q
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Build ω(s) from univariate models

More general LMC model

C(s, s′) =
K∑

k=1

ρk(s, s
′)︸ ︷︷ ︸

scale

λkλ
⊤
k︸ ︷︷ ︸

q×q matrix

, ω(s) =
K∑

k=1

fk(s)︸︷︷︸
scale

λk︸︷︷︸
q×1

= Λ⊤f(s)

Λ⊤ = [λ1 : · · · : λK ]: q × K loading matrix. λk ∈ Rq

f(s) = (f1(s), . . . , fK (s))
⊤, fk(s) are independent, each follows a random

field with covariance function ρk(·, ·).
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Spatial Regression Model with ω(s) modeled by LMC

Model :
y(s) = β⊤x(s) + Λ⊤f(s) + ϵ(s) , s ∈ D ,

ϵ(s)
iid∼ N(0,Σ) , fk(s) ∼ GP(0, ρk(·, · ;ψk))

Notations

Define γ = [β⊤,Λ⊤]⊤: (p + K)× q matrix

Priors for γ,Σ, {ψk}Kk=1 ?

Lu Zhang Lecture at UMich

Multivariate spatial modeling and BLMC Factor model



19/31

Motivating problem Multivariate Spatial Modeling Scalable BLMC factor model Others

Matrix-Normal Inverse-Wishart (MNIW)

Consider priors for {γ,Σ}

γ | Σ ∼ MN(µγ ,Vγ ,Σ) , Σ ∼ IW(Ψ, ν)

µγ : (p + K)× q matrix
Vγ : (p + K)× (p + K) positive definite matrix.

{γ,Σ} ∼ MNIW(µγ ,Vγ ,Ψ, ν).

Matrix-Normal distribution: If Zn×p ∼ MNn,p(M,U,V) then
vec(Z) = {z⊤1 , . . . , z⊤p }⊤ follows a Gaussian distribution

vec(Z) ∼ Nnp(vec(M),V ⊗U).
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Bayesian LMC factor model (BLMC)

Model :
y(s) = β⊤x(s) + Λ⊤f(s) + ϵ(s) , s ∈ D ,

ϵ(s)
iid∼ N(0,Σ) , fk(s) ∼ GP(0, ρk(·, · ;ψk))

Priors : {γ,Σ} ∼ MNIW(µγ ,Vγ ,Ψ, ν) , p(ψk)

The design of the prior yields the conditional posterior distributions of all
parameters except for {ψk}Kk=1 in closed form.
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Bayesian LMC factor model with diagonal Σ

When restricting Σ to be diagonal (Σ = diag({σ2
i }qi=1))

Model :
y(s) = β⊤x(s) + Λ⊤f(s) + ϵ(s) , s ∈ D ,

ϵ(s)
iid∼ N(0,Σ) , fk(s) ∼ GP(0, ρk(·, · ;ψk))

Priors : σ2
i ∼ IG(a, bi ) , γ | Σ ∼ MN(µγ ,Vγ ,Σ) , p(ψk)
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Flexible in modeling

q is small

K ≥ q:

Σ p.d: Assume potential inner
correlation in measurement error

q is large

K < q:

Σ Diagonal: Assume independence
measurement error
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Block update MCMC algorithm

Sample F
and impute
missing y(s)

Sample
{γ,Σ}

Update
{ψk}Kk=1 by
Metropolis-
Hastings

Posterior
prediction

Notations

F = [f(s1) : · · · : f(sn)]⊤ : n × K matrix

Scalable, i.e. the computational burden and storage requirement is linear to n,
once fks are modeled by scalable spatial modeling methods. (Majority of

popular univariate spatial modeling strategies.)
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Features of BLMC factor model and MCMC algorithm

Parameter expansion: Λ and F are not jointly identified. However, it
brings flexibility in model and efficiency in posterior sampling.

Conditional conjugacy contains geometry info to generate posterior samples.
Allows all parameters in step 1 or 2 to be sampled simultaneously through a
linear transformation of independent random variables.

Reduce the dependence between the updates in MCMC to improve the
convergence rate and mixing of MCMC chains.

Posterior inference on high-dimensional space

latent processes; missing response; prediction; parameter (identifiable)

Scalable for fitting massive spatial data with missing responses
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Figure: MCMC chain of Λ11 (1.0) and w1(s1) + β11 (0.453)
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vec(F) | · · · ∼ N((X̃⊤X̃)−1X̃⊤Ỹ, (X̃⊤X̃)−1)

(X̃⊤X̃) vec(F) = X̃⊤(Ỹ + η) , η ∼ N(0, Inq)

ρk = {ρk(si , sj ;ψk)}ni,j=1

A large family of popular scalale spatial models result in either sparse ρk

or sparse ρ−1
k that have sparse Cholesky decompositions

When covariance matrix ρk ’s have special pattern, the direct calculation of
(X̃⊤X̃)−1X̃⊤(Ỹ + η) is often scalable.

When precision matrics ρ−1
k are sparse, i.e., the number of non-zero

elements is linear to n.

X̃⊤X̃ = diag{ρ−1
k }+ sparse matrix

We use iterative methods for solving linear system to facilitate the
sampling of F
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Conjugate gradient (CG)

CG is an iterative method for solving a linear system.

Ax = b, A non-singular, n × n matrix, solution x∗ = A−1b

Belongs to Krylov subspace methods.

No matrix-matrix operations, Krylov subspace methods access matrices
only through matrix-vector multiplies and work with the resulting vectors.

More efficient for solving large sparse system
avoid storing matrix factors or even A
utilize the sparsity of A to reduce the storage and computational burden.
be significantly faster when A has certain features.

Lu Zhang (2022)1 wiley statref “Applications of Conjugate Gradient in
Bayesian computation”

focus on sparse regression and spatial analysis
A self-contained introduction of conjugate gradient is provided to facilitate
potential applications in a broader range of problems.

1Lu, Zhang. “Applications of Conjugate Gradient in Bayesian Computation”. In: Wiley
StatsRef: Statistics Reference Online (2022), pp. 1–7.
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Illustration with Vege Indices data (I)2

q = 10 Responses:
NDVI (Normalized Difference
Vegetation Index): an index to
identify vegetation amount and
measure plant health vitality
Red Reflectance (waveband in red)
8 other responses highly related to
the distribution of vegetation.

p = 2 Explanatory variables: intercept
and indicator of no vegetation or
urban area

n = 1, 020, 000 observed locations

Not all responses are recorded on
every observed location (Heatmap)
Has missing responses on over 65% of
observed locations locations

Figure: Colored transformed NDVI
image of zone western United States

2Lu, Zhang and Sudipto Banerjee. “Spatial Factor Modeling: A Bayesian Matrix-Normal
Approach for Misaligned Data”. In: Biometrics (2021).
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Illustration with Vege Indices data (II)

Fit Bayesian LMC factor model with
diagonal Σ

K = 2 Model fk(s) with Nearest
Neighbor Gaussian Process

10,000 iterations 60.7 hours for a
desktop with a single 8 Intel Core
i7-7700K CPU @ 4.20GHz processor
and 32 Gbytes of random-access
memory running Ubuntu 18.04.2 LTS.
locations

Figure: Interpolated maps of latent
process + intercept for transformed
NDVI
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Conjugate (multivariate) spatial regression model3

Features: no MCMC, directly sample from posterior

Performance

18.88 mins to generate 500 independent posterior samples for a larger NDVI
data with N = 3, 115, 934, q = 2 when fixing a small set of hyperparameters.

Pragmatic way of obtaining quick inference in multivariate spatial data
analysis, including the latent process

More restricted model assumptions
Cannot fit data with misalignment
For Matérn model with measurement errors, we fix ϕ, δ2 = τ2/σ2 and ν if
unknown No interval estimates of the fixed hyper-parameters

3Lu, Zhang, Sudipto Banerjee, and Andrew O Finley. “High-dimensional multivariate
geostatistics: A Bayesian matrix-normal approach”. In: Environmetrics (2021), e2675.
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Summary

Multivariate spatial modeling

Modeling approaches based separability and coregionalization

Other related topics:

Multivariate spatial modeling approaches based upon moving averages and
convolution

Multivariate models for areal data
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